Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang với \(AB\) là đáy lớn. Gọi \(M\) là trung điểm của đoạn \(AB\), \(E\) là giao điểm của hai cạnh của hình thang \(ABCD\) và \(G\) là trọng tâm của tam giác \(ECD\).
a) Chứng minh rằng bốn điểm \(S, E, M, G\) cùng thuộc một mặt phẳng \((α)\) và mặt phẳng này cắt cả hai mặt phẳng \((SAC)\) và \((SBD)\) theo cùng một giao tuyến \(d\).
b) Xác định giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\).
c) Lấy một điểm \(K\) trên đoạn \(SE\) và gọi \(C'= SC ∩KB, D'=SD ∩ KA\). Chứng minh rằng hai giao điểm của \(AC'\) và \(BD'\) thuộc đường thẳng \(d\) nói trên.
a) Chứng minh mặt phẳng \((\alpha)\) chính là mặt phẳng \((SEM)\).
b) Tìm hai điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\).
c) Gọi \(I = AC' \cap BD'\), chứng minh \(AC' \subset \left( {SAC} \right);\,\,BD' \subset \left( {SBD} \right) \Rightarrow I\) là điểm chung của hai mặt phẳng (SAC) và (SBD).
Lời giải chi tiết
a) Gọi \(O\) là giao điểm của \(AC\) và \(DB\); \(N\) là giao của \(EM\) và \(DC\).
\(M\) là trung điểm của \(AB\) nên \(N\) là trung điểm của \(DC\) (vì \(ABCD\) là hình thang),
Dễ dàng chứng minh được \(E, M, N\) thẳng hàng.
Vậy ba điểm \(E, G, M\) thẳng hàng . Mặt phẳng \((\alpha)\) chính là mặt phẳng \((SEM)\)
Ta dễ thấy \(\left\{ \begin{array}{l}\left( {SEM} \right) \cap \left( {SAC} \right) = SO\\\left( {SEM} \right) \cap \left( {SBD} \right) = SO\end{array} \right.\)
b) \(E = AD \cap BC \Rightarrow E \in AD \Rightarrow E \in (SAD)\)
\(E ∈ BC ⇒ E ∈ (SBC)\)
Vậy \(E\) là một điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\)
\(S\) là điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\)
\( \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = SE\)
c) \(C' = SC \cap KB \Rightarrow C' \in SC \Rightarrow C' \in \left( {SAC} \right)\)\( \Rightarrow AC' \subset \left( {SAC} \right)\)
Tương tự ta có: \(BD' ∈ (SDB)\)
Hai đường thẳng \(AC’\) và \(BD’\) cùng thuộc mặt phẳng \((ABK)\), giả sử \(I = AC' \cap BD'\)
\(I ∈ AC’ ⇒ M ∈ (SAC); I ∈ BD’ ⇒ M ∈ (SDB)\)
\(⇒ I\) là điểm chung của hai mặt phẳng \((SAC)\) và \((SDB)\) hay \(I ∈ d\) là giao tuyến của hai mặt phẳng (SAC) và (SBD).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK