Bài 6 trang 127 SGK Hình học 10 nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Trong mặt phẳng tọa độ Oxy cho hai điểm A(3, 4); B( 6, 0)

a) Nhận xét gì về tam giác OAB ? Tính diện tích của tam giác đó.

b) Viết phương trình đường tròn ngoại tiếp tam giác OAB.

c) Viết phương trình đường phân giác trong tại đỉnh O của tam giác OAB.

d) Viết phương trình đường tròn nội tiếp tam giác OAB.

Hướng dẫn giải

a) Ta có\(OA = \sqrt {{3^2} + {4^2}}  = 5\,\,\,;\,\,\,OB = \sqrt {{6^2} + 0}  = 6\,\,;\)

\(AB = \sqrt {{3^2} + {4^2}}  = 5\,\)

Tam giác OAB cân tại A. Gọi I là trung điểm của OB ta có I(3, 0) và \(AI = \sqrt {{{(3 - 3)}^2} + {{(0 - 4)}^2}}  = 4\) .

Diện tích tam giác OAB bằng \(S = {1 \over 2}.AI.OB = {1 \over 2}.4.6 = 12\) .

b) Đường tròn ngoại tiếp tam giác OAB có dạng

\((C):\,{x^2} + {y^2} + 2ax + 2by + c = 0\)                     

Vì \(O\,,\,A\,,\,B\,\, \in \,\,(O)\) nên 

\(\left\{ \matrix{
c = 0 \hfill \cr
9 + 16 + 6a + 8b + c = 0 \hfill \cr
36\,\,\,\,\,\,\,\, + 12a\,\,\,\,\,\,\,\,\, + c = 0 \hfill \cr} \right.\,\,\,\, \Leftrightarrow \,\,\,\,\left\{ \matrix{
a = - 3 \hfill \cr
b = - {7 \over 8} \hfill \cr
c = 0 \hfill \cr} \right.\)

Vậy  \((C)\,:\,{x^2} + {y^2} - 6x - {7 \over 4}y = 0\)  .

c) Phương trình đường thẳng \(OA\,:\,\,\,{x \over 3} = {y \over 4}\,\,\, \Leftrightarrow \,\,4x - 3y = 0\)

Phương trình đường thẳng \(OB\,:\,\,\,y = 0\)

Phương trình các đường phân giác tại đỉnh O của tam  giác OAB là:

\(\eqalign{
& {{4x - 3y} \over {\sqrt {{4^2} + {3^2}} }} = \pm {y \over 1}\,\,\, \Leftrightarrow \,\,\,\left[ \matrix{
4x - 3y = 5y\,\,\,\,\,\,\,({d_1}) \hfill \cr
4x - 3y = - 5y\,\,\,\,({d_2}) \hfill \cr} \right. \cr
&  \Leftrightarrow \,\,\,\left[ \matrix{
4x - 8y = 0 \hfill \cr
4x + 2y = 0 \hfill \cr} \right.\,\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\left[ \matrix{
x - 2y = 0 \hfill \cr
2x + y = 0 \hfill \cr} \right. \cr} \) 

Với \({d_1}:x - 2y = 0\,\,\) ta có \(({x_A} - 2{y_A})({x_B} - 2{y_B}) =  - 5.6 =  - 30 < 0\) . Vậy A và B khác phía đối với d1 , do đó d1 là đường phân giác trong góc O của tam giác OAB.

d) Vì tam giác OAB cân tại A nên AI là phân giác trong góc A của tam giác OAB  , ta có \(\overrightarrow {AI}  = (0\,;\, - 4)\) nên x = 3 là phương trình đường thẳng AI.

Tọa độ tâm J của đường tròn nội tiếp tam giác OAB là nghiệm hệ phương trình:

\(\left\{ \matrix{
x = 3 \hfill \cr
x - 2y = 0 \hfill \cr} \right.\,\,\, \Leftrightarrow \,\,\left\{ \matrix{
x = 3 \hfill \cr
y = {3 \over 2} \hfill \cr} \right.\)

Vậy \(J\left( {3\,;\,{3 \over 2}} \right)\) .

Bán kính đường tròn nội tiếp tam giác OAB   là

\(r = d(J,\,AO) = {{\left| {4.3 - 3.{3 \over 2}} \right|} \over {\sqrt {{3^2} + {4^2}} }} = {3 \over 2}\)               

Vậy phương trình đường tròn nội tiếp của tam giác OAB là \({(x - 3)^2} + {\left( {y - {3 \over 2}} \right)^2} = {9 \over 4}\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK