a) Tính độ dài của đoạn thẳng \(AM\) và tính cosin của góc \(BAM\)
b) Tính bán kính đường tròn ngoại tiếp tam giác \(ABM.\)
c) Tính độ dài đường trung tuyến vẽ từ \(C\) của tam giác \(ACM.\)
d) Tính diện tích tam giác \(ABM.\)
a) Ta có:
\( A{M^2} = B{A^2} + B{M^2}\)\( - 2BA.BM.\cos\widehat {ABM}\)
\(\eqalign{
& \Rightarrow A{M^2} = 36 + 4 - 2.6.2.{1 \over 2} \cr
& \Rightarrow A{M^2} = 28 \Rightarrow AM = 2\sqrt 7 (cm) \cr} \)
Ta cũng có:
\(\eqalign{
& \cos \widehat {BAM }= {{A{B^2} + A{M^2} - B{M^2}} \over {2AB.AM}} \cr
& \Rightarrow \cos\widehat { BAM }= {{5\sqrt 7 } \over {14}} \cr} \)
b) Trong tam giác \(ABM\), theo định lí Sin ta có:
\(\eqalign{
& {{AM} \over {\sin \widehat {ABM}}} = 2R \Leftrightarrow R = {{AM} \over {2\sin \widehat {ABM}}} \cr
& R = {{2\sqrt 7 } \over {2\sin {{60}^0}}} = {{2\sqrt {21} } \over 3}(cm) \cr} \)
c) Áp dụng công thức đường trung tuyến ta có:
\(\eqalign{
& C{P^2} = {{C{A^2} + C{M^2}} \over 2} - {{A{M^2}} \over 4} \cr
& \Rightarrow C{P^2} = {{36 + 16} \over 2} - {{28} \over 4} \cr
& \Rightarrow C{P^2} = 19 \Rightarrow CP = \sqrt {19} \cr}\)
d) Diện tích tam giác \(ABM\) là:
\(S = {1 \over 2}BA.BM\sin \widehat {ABM} \)\(= {1 \over 2}6.2\sin {60^0} = 3\sqrt 3 (c{m^2})\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK