Cho hình lăng trụ tứ giác \(ABCD.A’B’C’D’\) có \(E, F, M\) và \(N\) lần lượt là trung điểm của \(AC, BD, AC’\) và \(BD’\). Chứng minh \(MN = EF\).
Chứng minh \(MNFE\) là hình bình hành.
Lời giải chi tiết
Vì \(M\) là trung điểm của \(A’C\) và \(E\) là trung điểm của \(AC\) nên \(ME\) là đường trung bình của \(\Delta ACC' \Rightarrow \overrightarrow {EM} = {1 \over 2}\overrightarrow {CC'}\,\,\,\,\, (1)\)
Tương tự ta có \(FN\) là đường trung bình của tam giác \(BDB'\): \(\Rightarrow \overrightarrow {FN} = {1 \over 2}\overrightarrow {BB'} \,\,\,\,\,(2)\)
Ta lại có: \(\overrightarrow {AA'} = \overrightarrow {BB'}\,\,\,\,\,\, (3)\)
Từ (1), (2), (3) ⇒ \(\overrightarrow {EM} = \overrightarrow {FN}\) hay tứ giác \(MNFE\) là hình bình hành, do đó \(MN = EF\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK