Câu hỏi 2 trang 94 SGK Hình học 11

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình lập phương ABCD.A’B’C’D’

a) Hãy phân tích các vecto \(\overrightarrow {AC'} ;\,\overrightarrow {BD} \)  theo ba vecto \(\overrightarrow {AB} ;\,\overrightarrow {AD} ;\,\overrightarrow {{\rm{AA}}} {\rm{'}}\)

b) Tính cos (\(\overrightarrow {AC'} ;\,\overrightarrow {BD} \)) và từ đó suy ra \(\overrightarrow {AC'} ;\,\overrightarrow {BD} \)  vuông góc với nhau

Hướng dẫn giải

\(\eqalign{
& a)\, \cr
& \overrightarrow {AC'} = \overrightarrow {AC} {\rm{ + }}\overrightarrow {{\rm{AA}}} {\rm{'}}\,{\rm{ = }}\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA}}} {\rm{'}} \cr
& \overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \cr
& b) \cr
& \cos (\overrightarrow {AC'} ,\overrightarrow {BD} ) = {{\overrightarrow {AC'} .\overrightarrow {BD} } \over {|\overrightarrow {AC'} |.|\overrightarrow {BD} |}} \cr
& \overrightarrow {AC'} ,\overrightarrow {BD} = (\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA'}}} ).(\overrightarrow {AD} - \overrightarrow {AB} ) \cr
& = (\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA'}}} ).\overrightarrow {AD} - (\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {{\rm{AA'}}} ).\overrightarrow {AB} \cr
& = \overrightarrow {AB} .\overrightarrow {AD} + \overrightarrow {AD} .\overrightarrow {AD} + \overrightarrow {{\rm{AA'}}} .\overrightarrow {AD} - \overrightarrow {AB} .\overrightarrow {AB} - \overrightarrow {AD} .\overrightarrow {AB} - \overrightarrow {{\rm{AA'}}} .\overrightarrow {AB} \cr} \)

Hình lập phương ABCD.A’B’C’D’ nên AB, AD, AA’ đôi một vuông góc với nhau

 

\(\eqalign{
& (1) = \overrightarrow 0 + \overrightarrow {A{D^2}} + \overrightarrow 0 - \overrightarrow {A{B^2}} - \overrightarrow 0 - \overrightarrow 0 = 0\,\,(AB = AD) \cr
& \Rightarrow \cos (\overrightarrow {AC'} ,\overrightarrow {BD} ) = {{\overrightarrow {AC'} .\overrightarrow {BD} } \over {|\overrightarrow {AC'} |.|\overrightarrow {BD} |}} = {{\overrightarrow 0 } \over {\overrightarrow {AC'} ,\overrightarrow {BD} }} = 0 \cr
& \Rightarrow (\overrightarrow {AC'} ,\overrightarrow {BD} ) = {90^0} \cr} \)

Vậy hai vecto trên vuông góc với nhau

 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK