Gọi MH là đường cao của tam giác MNP. Chứng minh rằng: Nếu MN < MP thì HN < HP và \(\widehat{NMH}<\widehat{PMH}\) (yêu cầu xét hai trường hợp: khi góc N nhọn và khi góc N tù).
Khi góc N nhọn :
MH là đường cao của \(\Delta MNP\)
Suy ra MH vuông góc với NP
Do đường xiên MN < MP nên hình chiếu HN < HP
\(\widehat{NMH}=90^0 -\widehat{MNH}\)
\( \widehat{PMH}=90^0 -\widehat{MPH}\)
Lại có MP > MN nên \(\widehat{MNH} > \widehat{MPH}\) ( góc đối diện với cạnh lớn hơn thì lớn hơn).
Do đó \(\widehat{NMH}<\widehat{PMH}\).
Khi góc N tù :
MH là đường cao của \(\Delta MNP\)
suy ra MH vuông góc với NP
Do đường xiên MN < MP nên hình chiếu HN < HP.
\(\widehat{NMH}=90^0 -\widehat{MNH}\)
\( \widehat{PMH}=90^0 -\widehat{MPH}\)
\(\widehat{MNH}\) là góc ngoài của \(\Delta MNP\) nên \(\widehat{MNH} > \widehat{MPH}.\)
Do đó \(\widehat{NMH}<\widehat{PMH}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK