Cho lăng trụ đứng ABC.A'B'C' có độ dài cạnh bên là 2a, đáy ABC là tam giác vuông cân tại A, góc giữa AC' và mặt phẳng

Câu hỏi :

Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham khảo hình vẽ).

A.\(\pi {a^3}.\)

B. \(3\pi {a^3}.\)

C.\(2\pi {a^3}.\) 

D.\(4\pi {a^3}.\)

* Đáp án

D

* Hướng dẫn giải

 Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham kh (ảnh 2)

Gọi \(H\) là trung điểm của đoạn \(BC,\) vì \(\Delta ABC\) là tam giác vuông cân nên \(H\) là chân đường cao xuất phát từ đỉnh \(A\) đồng thời cũng là tâm đường tròn ngoại tiếp \(\Delta ABC.\)

Suy ra bán kính đường tròn ngoại tiếp đáy của lăng trụ \(ABC.A'B'C'\) là \(HC.\)

Vì \(\left\{ \begin{array}{l}AH \bot BC\\AH \bot BB'\end{array} \right.\) nên \(AH \bot \left( {BCC'B'} \right).\)

Suy ra \(HC\) là hình chiếu vuông góc của \(AC\) lên \(\left( {BCC'B'} \right).\)

Góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) là \(\widehat {AC'H} = {30^0}.\)

Đặt \(HC = x \Rightarrow AC = x\sqrt 2 .\)

Áp dụng định lý Pytago trong \(\Delta ACC'\) ta được \(AC' = \sqrt {2{x^2} + 4{a^2}} .\)

Áp dụng định lý Pytago trong \(\Delta HCC'\) ta được \[HC' = \sqrt {{x^2} + 4{a^2}} .\]

Xét \(\Delta AHC'\) vuông tại \(H\) có: \(\cos \left( {{{30}^0}} \right) = \frac{{HC'}}{{AC'}} \Leftrightarrow \frac{{\sqrt 3 }}{2} = \sqrt {\frac{{{x^2} + 4{a^2}}}{{2{x^2} + 4{a^2}}}} .\)

Khi đó: \(\frac{3}{4} = \frac{{{x^2} + 4{a^2}}}{{2{x^2} + 4{a^2}}} \Leftrightarrow 6{x^2} + 12{a^2} = 4{x^2} + 16{a^2} \Leftrightarrow x = a\sqrt 2 .\)

Thể tích khối trụ có hai đáy là hai đường tròn ngoại tiếp của lăng trụ \(ABC.A'B'C'\) là:

\(V = \pi {R^2}h = \pi {\left( {HC} \right)^2}CC' = \pi {\left( {a\sqrt 2 } \right)^2}.2a = 4\pi {a^3}.\)

Đáp án D

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK