A. \({x^2} + {y^2} - 6x + y - 1 = 0.\)
B. \({x^2} + {y^2} - 2x + 3y - 1 = 0.\)
C. \({x^2} + {y^2} - 6x - y + 1 = 0.\)
D. \({x^2} + {y^2} - 2x - y - 1 = 0.\)
A. 6,9
B. 6,8
C. 7
D. 7,1
A. \(\sqrt 6 - \frac{1}{2}\)
B. \(\frac{1}{{\sqrt 6 }} - \frac{1}{2}\)
C. \(\sqrt 6 - 3\)
D. \(\frac{{\sqrt 6 }}{6} - 3\)
A. \(\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)
B. \({a^2} = {b^2} + {c^2} - 2ab\cos C\)
C. \(\frac{a}{{\sin A}} = \frac{c}{{\sin C}}\)
D. \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin }}\)
A. \(\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1\)
B. \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{16}} = 1\)
C. \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\)
D. \(\frac{{{x^2}}}{{24}} + \frac{{{y^2}}}{{16}} = 1\)
A. 500
B. -500
C. \( - {50^0} + k{360^0},k \in Z\)
D. \( - {50^0} + k2\pi ,k \in Z\)
A. \(m \ge \frac{1}{2}\)
B. \(m > \frac{1}{2}\)
C. \(m < \frac{1}{2}\)
D. \(m \le \frac{1}{2}\)
A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9.\)
B. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 3.\)
C. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} = 9.\)
D. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 3.\)
A. \(x \in \left( { - \infty ; - 2} \right) \cup \left[ { - \frac{3}{5};\frac{3}{2}} \right)\)
B. \(x \in \left( { - 2; - \frac{3}{5}} \right) \cup \left( {\frac{3}{2}; + \infty } \right)\)
C. \(x \in \left( { - 2; - \frac{3}{5}} \right] \cup \left( {\frac{3}{2}; + \infty } \right)\)
D. \(x \in \left( { - 2; - \frac{3}{5}} \right) \cup \left[ {\frac{3}{2}; + \infty } \right)\)
A. \(\left( { - 5;1} \right] \cup \left[ {4; + \infty } \right)\)
B. \(\left[ { - 5;1} \right] \cup \left[ {4; + \infty } \right)\)
C. \(\left( { - \infty ; - 5} \right) \cup \left[ {1;4} \right]\)
D. \(\left( { - \infty ; - 5} \right] \cup \left[ {1;4} \right]\)
A. m = 0 hoặc m = 1
B. m = 4 hoặc m = -6
C. m = -4 hoặc m = -6
D. m = -4 hoặc m = -6
A. \(f(x) > 0,\forall x \in R\)
B. \(f(x) > 0,\forall x \in (0; + \infty )\)
C. \(f(x) < 0,\forall x \in R\)
D. \(f(x) < 0,\forall x \in (0; + \infty )\)
A. \(\overrightarrow {{n_1}} = (2; - 3)\)
B. \(\overrightarrow {{n_2}} = ( - 2; - 3)\)
C. \(\overrightarrow {{n_3}} = (2;3)\)
D. \(\overrightarrow {{n_4}} = (4;6)\)
A. 114035’
B. 114035’29”
C. 114059’
D. 114059’15”
A. \(x + y = \frac{\pi }{4}\)
B. \(x + y = \frac{{2\pi }}{3}\)
C. \(x + y = \frac{{3\pi }}{4}\)
D. \(x + y = \frac{{5\pi }}{6}\)
A. \({x^2} + {y^2} - x = 0.\)
B. \({x^2} - {y^2} - 2x + 3y - 1 = 0.\)
C. \({x^2} + {y^2} - x - y + 9 = 0.\)
D. \({x^2} + {y^2} - 2xy - 1 = 0.\)
A. \( - \frac{{18}}{{65}}\)
B. \(\frac{{16}}{{65}}\)
C. \( - \frac{{16}}{{65}}\)
D. \(\frac{{18}}{{65}}\)
A. \(x \in \left( {1;\frac{4}{3}} \right)\)
B. \(x \in ( - \infty ;1) \cup \left( {\frac{4}{3}; + \infty } \right)\)
C. \(x \in (1; + \infty )\)
D. \(x \in \left[ {1;\frac{4}{3}} \right]\)
A. \(5\sqrt 2 .\)
B. \(2\sqrt {23} .\)
C. 10
D. 5
A. \(4\sqrt 3 \)
B. \(3\sqrt 2 \)
C. \(\sqrt {70} \)
D. \(\frac{{20\sqrt 2 }}{3}\)
A. m > 5
B. \(m \le \frac{{11}}{2}\)
C. \(m < \frac{3}{7 hoặc m > 5
D. m > 4
A. 5
B. 6
C. 3
D. 4
A. \(2x + 4y \le 0\)
B. x - 2xy > 0
C. \(2{x^2} + 4y > 0\)
D. \({x^2} - 3xy + {y^2} < 0\)
A.
\(\left\{ \begin{array}{l}
x = 3t\\
y = 2 + 2t
\end{array} \right..\)
B.
\(\left\{ \begin{array}{l}
x = t\\
y = 2 + t
\end{array} \right..\)
C.
\(\left\{ \begin{array}{l}
x = - 2t\\
y = 2 + 3t
\end{array} \right..\)
D.
\(\left\{ {\begin{array}{*{20}{l}}
{x = - t}\\
{y = 2 + t}
\end{array}} \right..\)
A. \(\frac{7}{{18}}\pi \)
B. \(\frac{{70}}{\pi }\)
C. \(\frac{7}{{18}}\)
D. \(\frac{7}{{18\pi }}\)
A. \({\sin ^6}x + {\cos ^6}x = 1 + 3{\sin ^2}x{\cos ^2}x.\)
B. \({\sin ^4}x - {\cos ^4}x = {\sin ^2}x - {\cos ^2}x.\)
C. \({\sin ^4}x + {\cos ^4}x = 1 + 2{\sin ^2}x{\cos ^2}x.\)
D. \({\sin ^4}x + {\cos ^4}x = 1.\)
A. \(x \in \left( {\frac{5}{2} + \infty ;} \right)\)
B. \(x \in \left( { - \frac{5}{2}; + \infty } \right)\)
C. \(x \in \left( { - \infty ;\frac{5}{2}} \right)\)
D. \(x \in \left( { - \infty ; - \frac{5}{2}} \right)\)
A. \({F_1}(0; - 3);{F_2}(0;3)\)
B. \({F_1}(0; - 9);{F_2}(0;9)\)
C. \({F_1}( - 3;0);{F_2}(3;0)\)
D. \({F_1}( - 9;0);{F_2}(9;0)\)
A. 0,925
B. 37
C. 44
D. 1,1
A. \(\left[ {5; + \infty } \right)\)
B. \(\left( { - \infty ;5} \right)\)
C. \(\left( { - \infty ;5} \right]\)
D. \(\left( {5; + \infty } \right)\)
A. \(\frac{1}{4}\)
B. \(\frac{1}{2}\)
C. 0
D. 1
A. \(m \in \left[ {0;\frac{1}{4}} \right]\)
B. \(m \in \left( { - \infty ;0} \right] \cup \left[ {\frac{1}{4}; + \infty } \right]\)
C. \(m \in \left( {0;\frac{1}{4}} \right)\)
D. \(m \in \left( { - \infty ;0} \right)\)
A. \(\cos \alpha > 0\)
B. \(\sin \alpha < 0\)
C. \(\tan \alpha < 0\)
D. \(\cot \alpha < 0\)
A. P(1; 1)
B. N(1; 0)
C. Q(0; 1)
D. M(0;-1)
A. 8cm
B. 10cm
C. 9cm
D. 7,5cm
A. x + y + 17 = 0
B. x + 14 = 0
C. x - 3 = 0
D. y - 14 = 0
A. \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \)
B. \(\cos \left( {\alpha + \frac{\pi }{2}} \right) = - \sin \alpha \)
C. \(\cot (\alpha + \pi ) = - \cot \alpha \)
D. \(\tan \left( {\pi - \alpha } \right) = - \tan \alpha \)
A. 2
B. 1
C. 4
D. 3
A. Điểm B’
B. Điểm A’
C. Điểm A
D. Điểm B
A. 60 cm
B. 15cm
C. 120 cm
D. 30cm
A. \(\cos \alpha = - \frac{{\sqrt {21} }}{5}\)
B. \(\tan \alpha = - \frac{3}{4}\)
C. \(\cot \alpha = \frac{8}{{13}}\)
D. \(\sin \alpha = \frac{7}{{\sqrt {410} }}\)
A. m = 1
B. m < 1
C. \(m \ne 1\)
D. m > 1
A. x - y = 0
B. x + y - 2 = 0
C. 2x + y - 3 = 0
D. x + 2y - 3 = 0
A. (-1; -1)
B. (1; 1)
C. \(\left( { - 1; - \frac{4}{3}} \right)\)
D. \(\left( {1;\frac{3}{4}} \right)\)
A. \(\frac{x}{3} - \frac{y}{5} = 1\)
B. \( - \frac{x}{5} + \frac{y}{3} = 1\)
C. \( - \frac{x}{3} + \frac{y}{5} = 1\)
D. \( - \frac{x}{5} - \frac{y}{3} = 1\)
A. Song song
B. Cắt nhau nhưng không vuông góc
C. Trùng nhau
D. Vuông góc với nhau
A. \(\frac{\pi }{2}\)
B. \(\frac{\pi }{3}\)
C. \(\pi \)
D. \(\frac{\pi }{4}\)
A. 25
B. 5
C. 16
D. 10
A. \(\left( { - \infty ; - \frac{3}{4}} \right) \cup \left[ {1; + \infty } \right)\)
B. \(\left( { - \frac{3}{4};1} \right)\)
C. \(\left( { - \infty ; - \frac{3}{4}} \right) \cup \left( {1; + \infty } \right)\)
D. \(\left[ { - \frac{3}{4};1} \right]\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK