A. 1
B. \( - \infty \)
C. \( + \infty \)
D. - 2
A. \(SA\bot BD\)
B. \(AD\bot SC\)
C. \(SQ\bot BD\)
D. \(SC\bot BD\)
A. \(5\cos x - 3\sin x.\)
B. \(\cos x + 3\sin x.\)
C. \(\cos x + \sin x.\)
D. \(5\cos x + 3\sin x.\)
A. \(\frac{1}{{2\sqrt {{x^2} - 4{x^3}} }}\)
B. \(\frac{{x - 6{x^2}}}{{2\sqrt {{x^2} - 4{x^3}} }}\)
C. \(\frac{{x - 2{x^2}}}{{2\sqrt {{x^2} - 4{x^3}} }}\)
D. \(\frac{{x - 12{x^2}}}{{2\sqrt {{x^2} - 4{x^3}} }}\)
A. Hình hình hành.
B. Tam giác cân
C. Tam giác vuông.
D. Tam giác đều.
A. Nếu đường thẳng a song song với mặt phẳng (P) và đường thẳng b vuông góc với mặt phẳng (P) thì a vuông góc với b.
B. Nếu đường thẳng a song song với mặt phẳng (P) và đường thẳng b vuông góc với a thì b vuông góc với mặt phẳng (P).
C. Nếu đường thẳng a song song với đường thẳng b và b song song với mặt phẳng (P) thì a song song hoặc thuộc mặt phẳng (P).
D. Một đường thẳng vuông góc với hai đường thẳng cắt nhau thuộc một mặt phẳng thì nó vuông góc với mặt phẳng đó.
A. 12
B. 6
C. 14
D. 18
A. \(40{x^3} - \frac{4}{{{x^3}}}\)
B. \(40{x^3} + \frac{4}{{{x^3}}}\)
C. \(40{x^3} - \frac{8}{{{x^3}}}\)
D. \(40{x^3} + \frac{8}{{{x^3}}}\)
A. \(y' = 4{x^3} - 6x + 3\)
B. \(y' = 4{x^4} - 6x + 2\)
C. \(y' = 4{x^3} - 3x + 2\)
D. \(y' = 4{x^3} - 6x + 2\)
A. Chỉ I.
B. Chỉ II.
C. Chỉ I và II.
D. Chỉ III.
A. C thành B
B. A thành D
C. C thành A
D. B thành C
A. \( + \infty \)
B. \( - \infty \)
C. \(\frac{1}{2}\)
D. 0
A. \(4y - y'' = 0\)
B. \({y^2} + {\left( {y'} \right)^2} = 4\)
C. \(4y + y'' = 0\)
D. \(y = y'\tan 2x\)
A. \(45^0\)
B. \(90^0\)
C. \(60^0\)
D. \(120^0\)
A. \(\frac{1}{3}\)
B. - 2
C. \(-\frac{1}{3}\)
D. 2
A. x < 3
B. x < 6
C. x > 3
D. x < -3
A. Góc SIA (I là trung điểm BC)
B. Góc SCB
C. Góc SBA
D. Góc SCA
A. \(\frac{1}{4}\)
B. \(-\frac{1}{6}\)
C. \(\frac{1}{2}\)
D. 1
A. \(\frac{2}{9}\)
B. \(\frac{5}{{324}}\)
C. \(\frac{1}{{18}}\)
D. \(\frac{5}{9}\)
A. 792
B. 462
C. 924
D. 1716
A. \(u_{13}=34\)
B. \(u_{15}=44\)
C. \(S_5=25\)
D. \(u_{10}=35\)
A. \(a \subset \left( \alpha \right).\)
B. \(a\,\parallel \,\left( \alpha \right)\) hoặc \(a \subset \left( \alpha \right).\)
C. \(a\) cắt \(\left( \alpha \right).\)
D. \(a\,\parallel \,\left( \alpha \right)\)
A. Hai mặt phẳng không cắt nhau thì song song.
B. Hai mặt phẳng cùng song song với một đường thẳng thì cắt nhau.
C. Qua một điểm nằm ngoài một mặt phẳng cho trước có duy nhất một mặt phẳng song song với mặt phẳng đó.
D. Qua một điểm nằm ngoài một mặt phẳng cho trước có vô số mặt phẳng song song với mặt phẳng đó.
A. \(y=2-x\)
B. \(y=x-2\)
C. \(y=3-x\)
D. \(y=1-x\)
A. \( + \infty \)
B. - 1
C. 1
D. \(-\infty \)
A. \(\left( {10{x^4} - \frac{2}{{{x^2}}}} \right)dx\)
B. \(\left( {10{x^4} + \frac{2}{{{x^2}}} + 5} \right)dx\)
C. \(\left( {10x + \frac{2}{{{x^2}}}} \right)dx\)
D. \(\left( {10{x^4} + \frac{2}{{{x^2}}}} \right)dx\)
A. Hai mặt phẳng cùng vuông góc với một mặt phẳng thứ ba thì vuông góc với nhau.
B. Hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia.
C. Hai mặt phẳng cùng vuông góc với một mặt phẳng thì song song với nhau.
D. Cả ba mệnh đề trên đều sai.
A. \(\frac{a}{{\sqrt 2 }}\)
B. \(a\)
C. \(\frac{a}{2}\)
D. \(\frac{a}{{\sqrt 3 }}\)
A.
\(\left[ \begin{array}{l}
x = \frac{{7\pi }}{4} + k2\pi \\
x = \frac{{ - 7\pi }}{4} + k2\pi
\end{array} \right.\)
B.
\(\left[ \begin{array}{l}
x = \frac{\pi }{4} + k2\pi \\
x = \frac{{3\pi }}{4} + k2\pi
\end{array} \right.\)
C.
\(\left[ \begin{array}{l}
x = \frac{\pi }{4} + k2\pi \\
x = \frac{{ - \pi }}{4} + k2\pi
\end{array} \right.\)
D.
\(\left[ \begin{array}{l}
x = \frac{{3\pi }}{4} + k2\pi \\
x = \frac{{ - 3\pi }}{4} + k2\pi
\end{array} \right.\)
A. \( - \infty \)
B. 1
C. 9
D. \( + \infty \)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK