Bài 2: Chứng minh rằng “trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh ấy”.
Bài 3: Cho tam giác ABC có AB = 6cm; AC = 12cm; BC = 15cm.
a) Chứng minh rằng \(\Delta ABC\) vuông.
b) Vẽ trung tuyến AM. Từ M vẽ MH vuông góc với AC. Trên tia đối của tia MH lấy điểm K sao cho MK = MH. Chứng minh \(\Delta MHC = \Delta MKB.\)
c) Gọi G là giao điểm của BH và AM. Gọi I là trung điểm của AB. Chứng minh rằng I, G, C thẳng hàng.
Bài 1: Ta có \(6 - 1,AC
Bài 2:
Trên tia đối của tia MA lấy D sao cho MD = MA khi đó ta có \(\Delta AMC = \Delta DMB\) (c.g.c)
\( \Rightarrow AC = B{\rm{D}}\) và \(\widehat C = {\widehat B_1}\)
\( \Rightarrow B{\rm{D}}\) // AC (có cặp góc so le trong bằng nhau)
Mà \(AC \bot AB\) (gt)
\( \Rightarrow B{\rm{D}} \bot AB\) hay \(\widehat {AB{\rm{D}}} = {90^0}\).
Xét hai tam giác vuông ABD và BAC có AB chung, AC = BD (cmt).
Do đó \(\Delta AB{\rm{D}} = \Delta BAC\) (c.g.c)
\( \Rightarrow A{\rm{D}} = BC\) mà \(AM = \dfrac{1}{ 2}A{\rm{D}} \Rightarrow AM = \dfrac{1 }{2}BC.\)
Bài 3:
a) Ta có
\(B{C^2} = A{B^2} + A{C^2}{\rm{ }}({15^2} = {9^2} + {12^2}).\)
Theo định lý Pytago đảo \(\Delta ABC\) vuông tại A.
b) Xét \(\Delta MHC\) và \(\Delta MKB\) có
+) MC = MB (gt);
+) \({\widehat M_1} = {\widehat M_2}\) (đối đỉnh);
+) MH = MK (gt).
Do dó \(\Delta MHC = \Delta MKB\) (c.g.c)
6>Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK