b) Biện luận theo m số giao điểm của (P) và đường thẳng (d): y = 2x + m
c) Khi (d) và (P) cắt nhau, gọi A và B là giao điểm, hãy tìm tọa độ trung điểm của đoạn thẳng AB.
a) Bảng biến thiên:
Đồ thị hàm số:
b) Số giao điểm của parabol (P) với đường thẳng (d) đúng bằng số nghiệm của phương trình:
x2 + x- 6 = 2x + m hay x2 – x – 6 – m = 0 (1)
Phương trình (1) có biệt thức:
Δ = 1 + 4(6 + m) = 4m + 25
Do đó:
+ Nếu \(m < - {{25} \over 4} \Rightarrow \Delta < 0\) thì phương trình (1) vô nghiệm
Do đó, (P) và (d) không có điểm chung
+ Nếu \(m = - {{25} \over 4} \Rightarrow \Delta =0\) thì phương trình (1) có 1 nghiệm kép duy nhất
Do đó, (P) và (d) có 1 điểm chung
+ Nếu \(m > - {{25} \over 4} \Rightarrow \Delta > 0\) thì phương trình (1) có hai nghiệm phân biệt
c) Giả sử (P) và (d) cắt nhau tại hai điểm phân biệt. Khi đó hoành độ của A và B chính là hai nghiệm của phương trình (1), gọi chúng là x1 và x2.
Hơn nữa, A và B là hai điểm của đường thẳng (d) nên tọa độ của chúng là:
\(A({x_1};\,2{x_1} + m)\,;\,\,\,B({x_2};\,2{x_2} + m)\,\,\,(m > - {{25} \over 4})\)
Vậy trung điểm của đoạn thẳng AB có tọa độ là: \(I({{{x_1} + {x_2}} \over 2};\,{x_1} + {x_2} + m)\)
Theo định lý Vi-ét, ta có: x1 + x2 = 1
Tọa độ điểm I là \(({1 \over 2};\,1 + m)\,\,\,\,(m > - {{25} \over 4})\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK