Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:
\(f(x) = {{(3x - 2)(5 - x)} \over {(2 - 7x)}} \ge 0.\)
Quy tắc xét dấu một nhị thức dựa trên định lí :
“Nhị thức \(f(x) = ax + b (a≠0)\) có dấu cùng với hệ số \(a\) khi \(x\) lấy giá trị trong khoảng \(({{ - b} \over a}, + \infty )\) và trái dấu với hệ số \(a\) khi \(x\) lấy các giá trị thuộc khoảng \(( - \infty ,{{ - b} \over a})\)”.
Lời giải chi tiết
Ta có:
\(\begin{array}{l}
+ )\;3x - 2 = 0 \Leftrightarrow x = \frac{2}{3}.\\
+ )\;5 - x = 0 \Leftrightarrow x = 5.\\
+ )\;2 - 7x = 0 \Leftrightarrow x = \frac{2}{7}.
\end{array}\)
Áp dụng: Ta lập bảng xét dấu của vế trái \(f(x)\) của bất phương trình:
Tập nghiệm của bất phương trình: \(S = ({2 \over 7},{2 \over 3}{\rm{] }} \cup {\rm{ [}}5, + \infty )\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK