Trang chủ Lớp 9 Toán Lớp 9 SGK Cũ Bài 10. Diện tích hình tròn, hình quạt tròn Đề kiểm 15 phút - Đề số 4 - Bài 10 - Chương 3 - Hình học 9

Đề kiểm 15 phút - Đề số 4 - Bài 10 - Chương 3 - Hình học 9

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho ∆ABC đều cạnh A, trên nửa mặt phẳng bờ BC chứa điểm A, vẽ nửa đường tròn đường kính BC. Hãy tính diện tích phần hình tròn nằm ngoài ở miền ngoài của tam giác.

Hướng dẫn giải

Gọi M, N lần lượt là giao điểm của nửa đường tròn đường kính BC với hai cạnh AB và AC.

∆BOM cân có \(\widehat B = 60^\circ \) nên là tam giác đều.

 và \(OB = \dfrac{a}{2}\)

Do đó diện tích hình quạt tròn BOM là :

\({S_q} =\dfrac {{\pi {R^2}n}}{ {360}} = \dfrac{{\pi {{\left( {\dfrac{a }{ 2}} \right)}^2}.60}}{ {360}} = \dfrac{{\pi {a^2}} }{ {24}}\)(đvdt)

\({S_{BOM}} = \dfrac{{{{\left( {{a \over 2}} \right)}^2}.\sqrt 3 }}{ 4} =\dfrac {{{a^2}.\sqrt 3 } }{ {16}}\)(đvdt)

Vậy \({S_1} = {S_q} - {S_{BOM}} = \dfrac{{\pi {a^2}} }{ {24}} -\dfrac {{{a^2}\sqrt 3 } }{ {16}} \)\(\,= \dfrac{{{a^2}\left( {2\pi  - 3\sqrt 3 } \right)}}{ {48}}\)

Dễ thấy S1 = S2.

Vậy diện tích phần hình tròn nằm ngoài của tam giác là : \(S =\dfrac {{2.{a^2}\left( {2\pi  - 3\sqrt 3 } \right)} }{{48}}\)\(\, = \dfrac{{{a^2}\left( {2\pi  - 3\sqrt 3 } \right)} }{ {24}}\).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK