Đề kiểm tra 15 phút - Đề số 2 - Bài 1 - Chương 2 - Hình học 9

Lý thuyết Bài tập

Tóm tắt bài

Đề bài
Bài 1. Cho ∆ABC có ba góc nhọn nội tiếp đường tròn (O), các đường cao BE, CF cắt nhau tại H.

a. Chứng minh bốn điểm B, F, E, C thuộc cùng một đường tròn.

b. Kẻ đường kính AA’ của đường tròn (O). Chứng minh tứ giác BHCA’ là hình bình hành.

Bài 2. Cho đường tròn (O), dây AB không qua tâm O. Vẽ dây AC vuông góc với AB tại A. Chứng tỏ B, O, C thẳng hàng.

Hướng dẫn giải

Bài 1.

a. Gọi I là trung điểm của BC. Các tam giác vuông BFC và BEC lần lượt có các trung tuyến là IF và IE nên:

\(\eqalign{  & IF = IE = {1 \over 2}BC  \cr  & hay\,IB = IF = IE = IC \cr} \)

Chứng tỏ bốn điểm B, F, E, C thuộc cùng một đường tròn tâm I là trung điểm của BC.

b. Ta có: ∆ABA’ nội tiếp đường tròn có đường kính AA’ nên ∆ABA’ vuông tại B hay AB ⊥ A’B.

Lại có CH ⊥ AB (gt)

Do đó CH // A’B. Chứng minh tương tự ta có: AH // A’C

Vậy tứ giác BHCA’ là hình bình hành.

Lưu ý: Chứng minh tương tự như câu a, chúng ta sẽ có bốn điểm A, F, H, E thuộc cùng một đường tròn.

Bài 2.

Ta có: AB ⊥ AC (gt) nên ∆ABC là tam giác vuông nội tiếp đường tròn (O). Do đó BC là đường kính của đường tròn (O) nên BC đi qua O. Hay ba điểm B, O, C thẳng hàng.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK