a. Chứng minh rằng ∆ABC là tam giác vuông
b. Chứng minh rằng : \({S_{ABC}} \le {R^2}.\)
a. Ta có: \(OA = OB = OC (= R)\) \( \Rightarrow OA = {{BC} \over 2}\)
Trong ∆ABC, AO là đường trung tuyến và \(AO = {{BC} \over 2}\) nên ∆ABC vuông tại A.
b. Kẻ đường cao AH của tam giác ABC.
Ta có: \({S_{ABC}} = {1 \over 2}BC.AH \)\(\;= {1 \over 2}.2R.AH = R.AH\)
Trong tam giác vuông AHO, ta có:
\(AH ≤ AO\) (cạnh góc vuông hay \(AH ≤ R\) \( \Rightarrow AH.R \le {R^{2.}}\) Vậy \({S_{ABC}} \le {R^2}\) Dấu “=” xảy ra khi A trùng với các đầu mút của đường kính vuông góc với BC. Chú ý : Từ kết quả trên bạn có thể xét bài toán : “Tìm vị trí của điểm A để diện tích ∆ABC lớn nhất”.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK