Cho các phương trình:
x2 + 3x − m + 1 = 0 (1) và
2x2 − x + 1 − 2p = 0 (2)
a) Biện luận số nghiệm của mỗi phương trình bằng đồ thị.
b) Kiểm tra lại kết quả trên bằng phép tính.
* Xét phương trình x2 + 3x − m + 1 = 0
Ta có: (1) ⇔ x2 + 3x + 1 = m
Gọi (d) là đường thẳng y = m
Đồ thị hàm số y = x2 + 3x + 1 là parabol (P) có đỉnh là điểm (−1,5;−1,25) và hướng bề lõm lên trên.
Do đó:
* Xét phương trình 2x2 − x + 1 – 2p = 0 (2)
(2) ⇔ 2x2 – x + 1 = 2p
Gọi (d) là đường thẳng y = 2p; (P) là parabol y = 2x2 – x + 1
Parabol (P) có đỉnh tại điểm \(\left( {\frac{1}{4};\frac{7}{8}} \right)\) và hướng bề lõm lên trên.
Do đó:
b)
* Xét phương trình (1) có : Δ1 = 9 + 4m – 4 = 4m + 5
Rõ ràng kết quả biện luận bằng đồ thị số nghiệm của (1) và kết quả biện luận số nghiệm của (1) bằng phép tính là như nhau.
* Xét phương trình :
2x2 – x + 1 – 2p = 0, có Δ2 = 1 – 8 + 16p = 16p - 7
Ta thấy kết quả biện luận số nghiệm bằng đồ thị và kết quả biện luận số nghiệm của (2) bằng phép tính là như nhau.
-- Mod Toán 10
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK