Một hình nón đỉnh S có bán kính đáy bằng 2 căn 3 , góc ở đỉnh là 120 độ

Câu hỏi :

Một hình nón đỉnh S có bán kính đáy bằng 2a3, góc ở đỉnh là 120°. Thiết diện qua đỉnh của hình nón là một tam giác. Diện tích lớn nhất Smax của thiết diện đó là bao nhiêu?

A. Smax=8a2

B. Smax=4a22

C. Smax=4a2

D. Smax=16a2

* Đáp án

* Hướng dẫn giải

Giả sử O là tâm đáy và AB là một đường kính của đường tròn đáy hình nón.

Thiết diện qua đỉnh của hình nón là tam giác can SAM. Theo giả thiết hình nón có bán kính đáy

nên 

Xét tam giác SOA vuông tại O, ta có 

Diện tích thiết diện là

Do  nên  lớn nhất khi và chỉ khi  hay khi tam giác ASM vuông cân đỉnh S (vì  nên tồn tại tam giác ASM thỏa mãn)

Vậy diện tích thiết diện lớn nhất là:  (đvdt)

Đáp án cần chọn là: A

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK