Câu hỏi :

Hai người ở hai địa điểm A và B cách nhau 3,6km, khởi hành cùng một lúc, đi ngược chiều nhau và gặp nhau ở một địa điểm cách A là 2km. Nếu cả hai cùng giữ nguyên vận tốc như trường hợp trên, nhưng người đi chậm hơn xuất phát  trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường. Tính vận tốc của mỗi người. 

A. A: 75m/phút B: 60m/phút

B. A: 70m/phút B: 65m/phút

C. A: 75m/phút B: 65m/phút

D. A: 70m/phút B: 60m/phút

* Đáp án

A

* Hướng dẫn giải

Gọi vận tốc của người đi từ A là \({v_1}\) (m/phút), vận tốc của người đi từ B là \({v_2}\) (m/phút). Điều kiện là \({v_1};{v_2} > 0\)

Do hai người cùng xuất phát nên ta có phương trình: \(\dfrac{{2000}}{{{v_1}}} = \dfrac{{1600}}{{{v_2}}}\)         (1)

Điều đó còn cho thấy người đi từ B đi chậm hơn. Nếu người đi chậm hơn, tức là người đi từ B xuất phát trước người kia 6 phút thì hai người gặp nhau ở chính giữa quãng đường. Khi đó mỗi người đi được \(1800m\) .

Do đó, ta có phương trình: \(\dfrac{{1800}}{{{v_1}}} + 6 = \dfrac{{1800}}{{{v_2}}}\)               (2)

Bài toán dẫn đến hệ gồm hai phương trình (1) và (2)

Đặt \(\dfrac{{100}}{{{v_1}}} = x\) và \(\dfrac{{100}}{{{v_2}}} = y\) , từ (1) và (2) ta có hệ phương trình:

(I)    \(\left\{ \begin{array}{l}20x = 16y\\18x + 6 = 18y\end{array} \right.\)

Giải hệ phương trình (I)

\(\begin{array}{l}
\left( I \right) \Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{4}{5}y\\
18.\dfrac{4}{5}y + 6 = 18y
\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{4}{5}y\\
\dfrac{{18}}{5}y = 6
\end{array} \right.
\Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{4}{3}\\ 
y = \dfrac{5}{3}
\end{array} \right.
\end{array}\)

Nghiệm của hệ (I) là \(\left( {x;y} \right) = \left( {\dfrac{4}{3};\dfrac{5}{3}} \right)\) . Cuối cùng, ta có

\(\dfrac{{100}}{{{v_1}}} = \dfrac{4}{3} \Leftrightarrow {v_1} = 75\)

\(\dfrac{{100}}{{{v_2}}} = \dfrac{5}{3} \Leftrightarrow {v_2} = 60\)

Vậy vận tốc người đi từ A là \(75m/phút\) , vận tốc người đi từ B là \(60m/phút.\)

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK