Phân tích:
Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Qua A kẻ đường thẳng song song với BC cắt CD tại E. Hình thang ABCE có 2 cạnh bên song song nên AB = EC = 2cm do đó DE = 2cm
Tam giác ADE dựng được vì biết 2 góc kề với một cạnh.
Điểm C nằm trên tia DE cách D một khoảng bằng 4cm.
Điểm B thỏa mãn hai điều kiện:
- B nằm trên đường thẳng đi qua A và song song với CD.
- B nằm trên đường thẳng đi qua C và song song với AE.
Cách dựng:
- Dựng ΔADE biết DE = 2cm, D = , E =
- Trên tia DE lấy điểm C sao cho DC = 4cm
- Dựng tia Ax // CD, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm C
- Dựng tia Cy // AE, Cy nằm trên nửa mặt phẳng bờ CD chứa điểm A.
Cy cắt Ax tại B. Hình thang ABCD cần dựng.
Chứng minh:
Tứ giác ABCD là hình thang vì AB // CD.
CD = CE + ED ⇒ CE = CD – ED = 4 – 2 = 2 (cm)
Hình thang ABCE có hai cạnh bên AE // CB
⇒ AB = CE = 2 (cm)
C = E = (hai góc đồng vị)
D =
Hình thang ABCD thỏa mãn điều kiện bài toán.
Biện luận: Tam giác ADE luôn dựng được, hình thang ABCD luôn dựng được. Ta dựng được một hình thang thỏa mãn điều kiện bài toán.
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK