Cho hình chữ nhật có hai cạnh kề không bằng nhau. Chứng minh rằng các

Câu hỏi :

Cho hình chữ nhật có hai cạnh kề không bằng nhau. Chứng minh rằng các tia phân giác của các góc của hình chữ nhật đó cắt nhau tạo thành một hình vuông.

* Đáp án

* Hướng dẫn giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi giao điểm các đường phân giác của các góc: A, B, C, D theo thứ tự cắt nhau tại E, H, F, G.

* Trong ADG , ta có:

(GAD) = 450(GDA) = 450 (gt)

Suy ra: (AGD) = 1800(GAD) - (GDA) = 900

⇒ GAD vuông cân tại G.

⇒ GD = GA

Trong BHC, ta có:

(HBC) = 450(HCB) = 450 (gt)

Suy ra: (BHC) = 1800 - (HBC) - (HCB) = 900

⇒ HBC vuông cân tại H.

⇒ HB = HC

* Trong ΔFDC, ta có: D1 = 450; C1450 (gt)

Suy ra: F = 1800 - D1 - C1900

⇒ FDC vuông cân tại F ⇒ FD = FC

Nên tứ giác EFGH là hình chữ nhật (vì có 3 góc vuông).

Xét GAD và HBC,ta có: (GAD) = (HBC) = 450

AD = BC (tính chất hình chữ nhật)

(GDA) = (HCB) = 450

Suy ra: GAD = HBC ( g.c.g)

Do đó, GD = HC .

Lại có: FD = FC (chứng minh trên)

Suy ra: FG = FH

Vậy hình chữ nhật EFGH có hai cạnh kề bằng nhau nên nó là hình vuông.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải Sách Bài Tập Toán 8 Tập 1 !!

Số câu hỏi: 794

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK