Cho tứ diện đều ABCD có cạnh đáy bằng a, M là trung điểm của CD

Câu hỏi :

Cho tứ diện đều ABCD có cạnh đáy bằng a, M là trung điểm của CD. Tính cosin của góc giữa hai đường thẳng AC, BM.  

A. 36

B. 32

C. 0

D. 233

* Đáp án

A

* Hướng dẫn giải

Phương pháp:

- Gọi N là trung điểm của AD chứng minh AC;BM=MN;BM

- Tính các cạnh của tam giác BMN sử dụng định lí Co-sin trong tam giác: cosBMN=BM2+MN2BN22BM.MN

Cách giải:

Cho tứ diện đều ABCD có cạnh đáy bằng a, M là trung điểm của CD (ảnh 1)

Gọi N là trung điểm của AD ta có MN//AC (MN là đường trung bình của ΔACD)

AC;BM=MN;BM.

ΔABD,ΔBCD là các tam giác đều cạnh a nên BM=BN=a32.

MN là đường trung bình của ΔACD nên MN=12AC=a2.

Áp dụng định lí Co-sin trong tam giác BMN:cosBMN=BM2+MN2BN22BM.MN=3a24+a243a242.a32.a2=36.

Chọn A.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK