A. I = 2017
B. I = 1009
C. I = 2018
D. I = 1008
A. \(V = \pi {R^3}\)
B. \(V = \frac{{\pi {R^3}}}{2}\)
C. \(V = \frac{{5\pi {R^3}}}{{12}}\)
D. \(V = \frac{{2\pi {R^3}}}{5}\)
A. \(I\left( {2; - 2;0} \right),R = 5\)
B. \(I\left( { - 2;3;0} \right),R = \sqrt 5 \)
C. \(I\left( {2;3;1} \right),R = 5\)
D. \(I\left( {2;3;0} \right),R = \sqrt 5 \)
A. \(\frac{{\sqrt {170} }}{5}.\)
B. \(\frac{{170}}{5}.\)
C. \(\sqrt {\frac{{170}}{5}} .\)
D. \(\frac{{170}}{{25}}.\)
A. 2
B. 4
C. 6
D. \(\sqrt 5 \)
A. -1
B. 1
C. -2
D. 0
A. a - b = -7
B. ab = -12
C. a + b = 7
D. \(\frac{a}{b} = - 2\)
A. \({(x - 1)^2} + {(y - 1)^2} + {z^2} = 50\)
B. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 5\sqrt 2 \)
C. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 50\)
D. \({(x + 1)^2} + {(y + 1)^2} + {z^2} = 25\)
A. 9
B. 3
C. 7
D. 10
A. \(\left( {\frac{4}{5};\, - \frac{7}{5}} \right)\)
B. \(\left( { - \frac{4}{5};\,\frac{7}{5}} \right)\)
C. \(\left( { - \frac{4}{5};\, - \frac{7}{5}} \right)\)
D. \(\left( {\frac{4}{5};\,\frac{7}{5}} \right)\)
A. \(\overrightarrow a = \left( {1;2; - 3} \right)\)
B. \(\overrightarrow a = \left( {1;0; - 3} \right)\)
C. \(\overrightarrow a = \left( {0;2; 1} \right)\)
D. \(\overrightarrow a = \left( {1;2;1} \right)\)
A. \(\frac{{13}}{4}.\)
B. \(\frac{{7}}{4}.\)
C. \(\frac{{9}}{4}.\)
D. \(\frac{{9}}{2}.\)
A. I(-1;1;3)
B. I(-1;2;-3)
C. I(3;1;-3)
D. I(-1;1;-3)
A. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 15\)
B. \({\left( {x + 3} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 1} \right)^2} = 17\)
C. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 17\)
D. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 1} \right)^2} = 15\)
A. \(I = {e^{\ln 2x}} + C\)
B. \(I = {e^{\ln x}} + C\)
C. \(I = - {e^{\ln x}} + C\)
D. \(I = \frac{{{e^{\ln x}}}}{x} + C\)
A. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = 2 + x\\ dv = xdx \end{array} \right.\)
B. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = \ln \left( {2 + x} \right)\\ dv = xdx \end{array} \right.\)
C. đổi biến số và đặt \(u = \ln (x + 2)\)
D. nguyên hàm từng phần và đặt \(\left\{ \begin{array}{l} u = x\\ dv = \ln \left( {2 + x} \right)dx \end{array} \right.\)
A. \(\int\limits_a^b {f(x)dx = \int\limits_a^c {f(x)dx + } } \int\limits_b^c {f(x)dx} .\)
B. \(\int\limits_a^b {f\left( x \right)dx = - \int\limits_b^a {f(x)dx} } .\)
C. \(\int\limits_a^b {\left[ {f(x) - g(x)} \right]dx = \int\limits_a^b {f(x)dx - } } \int\limits_a^b {g(x)dx} .\)
D. \(\int\limits_a^a {f(x)dx = 0} \)
A. m = 3
B. m = 2
C. m = 1
D. m = 0
A. Phần thực là 3 và phần ảo là −4.
B. Phần thực là −4 và phần ảo là 3i.
C. Phần thực là −4 và phần ảo là 3.
D. Phần thực là 3 và phần ảo là −4i.
A. -3+6i
B. -1+4i
C. -1+6i
D. -3+4i
A. \(\overrightarrow n = (1;1;3)\)
B. \(\overrightarrow n = ( - 1;3; - 4)\)
C. \(\overrightarrow n = (1; - 1;3)\)
D. \(\overrightarrow n = ( - 1; - 1;3)\)
A. \(\int {f(x)dx = \frac{{{x^2}}}{2} - \frac{1}{2}\sin 2x + C} \)
B. \(\int {f(x)dx = \frac{{{x^2}}}{2}} - \sin 2x + C.\)
C. \(\int {f(x)dx = \frac{{{x^2}}}{2}} + \frac{1}{2}sin2x + C.\)
D. \(\int {f(x)dx = \frac{{{x^2}}}{2}} + \sin 2x + C.\)
A. \({z_{1,2}} = \frac{{ - b \pm i\sqrt \Delta }}{{2a}}\)
B. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
C. \({z_{1,2}} = \frac{{b \pm i\sqrt {\left| \Delta \right|} }}{{2a}}\)
D. \({z_{1,2}} = \frac{{ - b \pm i\sqrt {\left| \Delta \right|} }}{a}\)
A. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)
B. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{2}\)
C. \(\frac{{x - 1}}{4} = \frac{{y + 2}}{3} = \frac{{z - 5}}{2}\)
D. \(\frac{{x - 1}}{{ - 4}} = \frac{{y + 2}}{{ - 3}} = \frac{{z - 5}}{{ - 2}}\)
A. \(z \in R.\)
B. Mô đun của z bằng 1.
C. z có phần thực và phần ảo đều khác 0
D. z là số thuần ảo.
A. 2x - y - 2z + 9 = 0
B. - 2x + y + 2z + 9 = 0
C. 2x - y - 2z + 5 = 0
D. - 2x + y + 2z + 5 = 0
A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{{ - 5}}\)
B. \(\frac{{x - 1}}{5} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 9}}\)
C. \(\frac{{x - 1}}{9} = \frac{{y - 2}}{2} = \frac{{z + 1}}{{ - 5}}\)
D. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 9}} = \frac{{z + 1}}{5}\)
A. 2x + 3y + 5z - 13 = 0
B. 2x + 6y + 10z - 11 = 0
C. x + 3y + 5z - 13 = 0
D. x + 3y + 5z + 13 = 0
A. x = 1
B. x = -1
C. x = 0
D. \(x = 1 - \sqrt 3 \)
A. \(2\pi \left( {\ln 2 - 1} \right)\)
B. \(2\pi \ln 2\)
C. \(\pi \left( {2\ln 2 - 1} \right)\)
D. \(\pi \left( {\ln 2 + 1} \right)\)
A. 3
B. 4
C. \(2\sqrt 2 \)
D. 2
A. r = 4
B. r = 20
C. r = 22
D. r = 5
A. 5x - 4y - z - 16 = 0
B. 5x - 4y + z + 16 = 0
C. 5x + 4y + z - 16 = 0
D. 5x - 4y + z - 16 = 0
A. 11x - 7y - 2z - 21 = 0
B. 11x + 7y - 2z - 21 = 0
C. 11x + 7y + 2z + 21 = 0
D. 11x - 7y + 2z + 21 = 0
A. Tam giác ABC là tam giác đều.
B. O là tâm đường tròn ngoại tiếp tam giác ABC
C. Trọng tâm tam giác ABC là điểm biểu diễn số phức \({z_1} + {z_2} + {z_3}\).
D. O là trọng tâm tam giác ABC
A. 321,05 lít
B. 540,01 lít
C. 201,32 lít
D. 425,16 lít
A. M(2;1)
B. M(1;-2)
C. M(0;-1)
D. M(-2;1)
A. \(\frac{2}{{\sqrt {14} }}\)
B. \(\frac{3}{{\sqrt {14} }}\)
C. \(\frac{4}{{\sqrt {14} }}\)
D. \(\frac{5}{{\sqrt {14} }}\)
A. \(\frac{7}{2}\)
B. \(\frac{9}{2}\)
C. \(\frac{17}{4}\)
D. \(\frac{9}{4}\)
A. \(\frac{{x + 1}}{5} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)
B. \(\frac{{x - 1}}{5} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{{ - 3}}\)
C. \(\frac{{x - 1}}{5} = \frac{{y + 1}}{1} = \frac{{z - 1}}{{ - 3}}\)
D. \(\frac{{x - 1}}{{ - 5}} = \frac{{y + 1}}{1} = \frac{{z - 1}}{3}\)
A. \(S = \left| {\int\limits_a^b {f\left( x \right)dx} } \right|\)
B. \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \)
C. \(S = \pi \int\limits_a^b {{f^2}\left( x \right)dx} \)
D. \(S = \int\limits_a^b {f\left( x \right)dx} \)
A. - 1 + 2i
B. 1 - 2i
C. - 1 - 2i
D. 1 + 2i
A. \(V = \int\limits_0^\pi {{{\cos }^2}xdx} \)
B. \(V = \pi \int\limits_0^\pi {\left| {\cos x} \right|dx} \)
C. \(V = \pi \left| {\int\limits_0^\pi {\left( { - \cos x} \right)dx} } \right|\)
D. \(V = \pi \int\limits_0^\pi {{{\cos }^2}xdx} \)
A. - 2x + 5y + 2z - 28 = 0
B. x - 4y - 3z + 28 = 0
C. x - 4y - 3z - 28 = 0
D. - 2x + 5y + 2z + 28 = 0
A. \(3{x^3} - 2{x^2} + 3x + C.\)
B. \({x^3} - {x^2} + C.\)
C. \({x^3} - {x^2} + 3x + C.\)
D. \(6x - 2 + C.\)
A. P = 4
B. P = 3
C. P = 10
D. P = 2
A. \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} .\)
B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} .\)
C. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} .} \right|\)
D. \(\int\limits_a^b {\left| {f\left( x \right)} \right|dx - \int\limits_a^b {\left| {g\left( x \right)} \right|dx} .} .\)
A. \(A'\left( {2;0;5} \right)\)
B. \(A'\left( {0;3;5} \right)\)
C. \(A'\left( {0;3;0} \right)\)
D. \(A'\left( {2;0;0} \right)\)
A. \(\frac{{x - 1}}{2} = \frac{{y - 2}}{{ - 1}} = \frac{{z - 3}}{{ - 2}}\)
B. \(\frac{{x + 2}}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}.\)
C. \(\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{{z + 2}}{3}.\)
D. \(\frac{{x + 1}}{2} = \frac{{y + 2}}{{ - 1}} = \frac{{z + 3}}{{ - 2}}\)
A. 1 - 15i
B. - 15 + i
C. - 15 - i
D. - 1 - 15i
A. \(\overrightarrow n = \left( { - 5;1; - 2} \right)\)
B. \(\overrightarrow n = \left( { - \frac{1}{5}; - 1; - \frac{1}{2}} \right)\)
C. \(\overrightarrow n = \left( {2; - 10;5} \right)\)
D. \(\overrightarrow n = \left( { - 2; - 10;20} \right)\)
A. 4
B. 5
C. 3
D. 0
A. \(\overrightarrow {OM} = - 3\overrightarrow i - 4\overrightarrow j + 12\overrightarrow k \)
B. \(\overrightarrow {OM} = - 3\overrightarrow i + 4\overrightarrow j - 12\overrightarrow k \)
C. \(\overrightarrow {OM} = 3\overrightarrow i + 4\overrightarrow j + 12\overrightarrow k \)
D. \(\overrightarrow {OM} = 3\overrightarrow i - 4\overrightarrow j + 12\overrightarrow k \)
A. \(\overline z = 8 - 2i.\)
B. \(\overline z = 21 - 2i.\)
C. \(\overline z = 21 + 2i.\)
D. \(\overline z = 8 + 2i.\)
A. \(\frac{1}{2}{e^{ - 2x + 1}} + C.\)
B. \( - \frac{1}{2}{e^{ - 2x + 1}} + C.\)
C. \({e^{ - 2x + 1}} + C.\)
D. \( - 2{e^{ - 2x + 1}} + C.\)
A. \(\frac{{x + 1}}{3} = \frac{{y + 1}}{1} = \frac{{z + 3}}{2}\)
B. \(\frac{{x - 3}}{1} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\)
C. \(\frac{{x + 3}}{1} = \frac{{y + 1}}{1} = \frac{{z + 2}}{3}\)
D. \(\frac{{x - 1}}{3} = \frac{{y - 1}}{1} = \frac{{z - 3}}{2}\)
A. 3
B. -12
C. -3
D. 12
A. \(\left| z \right| = 17.\)
B. \(\left| z \right| = \sqrt {15} .\)
C. \(\left| z \right| = 3.\)
D. \(\left| z \right| = \sqrt {17} .\)
A. 33
B. 26
C. 17
D. 6
A. \(I = \int\limits_1^e {\left( {2t + 3} \right)dt} .\)
B. \(I = \int\limits_0^1 {\left( {2t} \right)dt} .\)
C. \(I = \int\limits_0^1 {\left( {2t + 3} \right)dt} .\)
D. \(I = \int\limits_0^1 {\left( {2\ln t + 3} \right)dt} .\)
A. T = 156
B. T = 62
C. T = 159
D. T = 167
A. \(T = 2\sqrt 5 \)
B. T = 4
C. T = 10
D. T = 7
A. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 81\)
B. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 25\)
C. \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 1} \right)^2} = 5\)
D. \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\)
A. \({\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 5} \right)^2} = \frac{{361}}{{49}}\)
B. \({\left( {x - 3} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 5} \right)^2} = 49\)
C. \({\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 5} \right)^2} = 49\)
D. \({\left( {x + 3} \right)^2} + {\left( {y + 4} \right)^2} + {\left( {z - 5} \right)^2} = \frac{{361}}{{49}}\)
A. k = - 5.
B. \(k = \frac{1}{5}\)
C. k = 5.
D. \(k = - \frac{1}{5}\)
A. \(S = \frac{{81}}{{12}}\)
B. S = 13
C. \(S = \frac{9}{4}\)
D. \(S = \frac{{37}}{{12}}\)
A. \(\frac{{49}}{3}\)
B. 18
C. \(\frac{{65}}{3}\)
D. 36
A. - y + z - 4 = 0
B. y - z - 1 = 0
C. y + z - 4 = 0
D. 3x - 3z - 4 = 0
A. \(k = \frac{{66}}{{49}}\)
B. \(k = \frac{{36}}{{29}}\)
C. \(k = \frac{{74}}{{49}}\)
D. \(k = \frac{{12}}{7}\)
A. P = 5
B. P = -1
C. P = 6
D. P = 3
A. \(F\left( x \right) = \tan x - 1\)
B. \(F\left( x \right) = \tan x - x + \frac{\pi }{4} - 1\)
C. \(F\left( x \right) = \tan x + x + \frac{\pi }{4} - 1\)
D. \(F\left( x \right) = 2\frac{{\tan x}}{{{{\cos }^2}x}} - 4\)
A. \(\frac{x}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}\)
B. \(\frac{{x + 1}}{2} = \frac{y}{4} = \frac{{z + 2}}{{ - 2}}\)
C. \(\frac{{x + 1}}{{ - 2}} = \frac{y}{{ - 4}} = \frac{{z + 2}}{{ - 2}}\)
D. \(\frac{{x - 1}}{2} = \frac{{y - 4}}{2} = \frac{{z - 4}}{2}\)
A. \(\frac{{x + 2}}{{ - 1}} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 1}}\)
B. \(\frac{x}{1} = \frac{{y - 5}}{{ - 2}} = \frac{{z + 3}}{1}\)
C. \(\frac{{x - 2}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z + 1}}{2}\)
D. \(\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 1}}{{ - 1}}\)
A. \(S = 2\sqrt {61} \)
B. \(S = \frac{{\sqrt {61} }}{2}\)
C. \(S = \frac{{\sqrt {61} }}{3}\)
D. \(S = \sqrt {61} \)
A. \(\overline z = - 2 - 10i\)
B. \(\overline z = - 1 + 5i\)
C. \(\overline z = - 2 + 10i\)
D. \(\overline z = - 1 - 5i\)
A. \(V = \frac{\pi }{6}\left( {3{\pi ^2} + 4\pi - 8} \right)\)
B. \(V = \frac{\pi }{{16}}\left( {3{\pi ^2} - 4\pi - 8} \right)\)
C. \(V = \frac{\pi }{8}\left( {3{\pi ^2} + 4\pi - 8} \right)\)
D. \(V = \frac{1}{{16}}\left( {3{\pi ^2} - 4\pi - 8} \right)\)
A. I = 19
B. I = 38
C. \(I = \frac{{670}}{3}\)
D. \(I = \frac{{38}}{3}\)
A. \(OM = \sqrt {35} \)
B. \(OM = 2\sqrt {35} \)
C. \(OM = \frac{{\sqrt {14} }}{2}\)
D. \(OM = \sqrt 5 \)
A. \(S = \pi \int\limits_0^4 {{3^{2x}}dx} \)
B. \(S = \int\limits_0^4 {\left( { - {3^x}} \right)dx} \)
C. \(S = \int\limits_0^4 {{3^x}dx} \)
D. \(S = \pi \int\limits_0^4 {{3^x}dx} \)
A. \(\frac{x}{1} = \frac{{y - 1}}{{ - 2}} = \frac{z}{1}\)
B. \(\frac{x}{1} = \frac{{y + 1}}{{ - 2}} = \frac{z}{1}\)
C. \(\frac{x}{1} = \frac{{y + 1}}{2} = \frac{z}{1}\)
D. \(\frac{x}{1} = \frac{{y - 1}}{2} = \frac{z}{1}\)
A. \(I = m\cos 2m - J.\)
B. \(I = - m\cos 2m - J.\)
C. \(I = - m\cos 2m + J.\)
D. \(I = m\cos 2m + J.\)
A. 3
B. 6
C. 9
D. 1
A. 8 và \( - 7i\)
B. 8 và 7.
C. 8 và \(7i\)
D. 8 và \( - 7\)
A. \(\dfrac{x}{1} = \dfrac{y}{1} = \dfrac{{z - 2}}{{ - 2}}\)
B. \(\dfrac{x}{1} = \dfrac{y}{1} = \dfrac{{z - 2}}{2}\)
C. \(\dfrac{x}{1} = \dfrac{y}{1} = \dfrac{{z + 2}}{{ - 2}}\)
D. \(\dfrac{x}{1} = \dfrac{y}{1} = \dfrac{{z + 2}}{2}\)
A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = \sqrt 3 \)
B. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 3\)
C. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 3\)
D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {z^2} = 11\)
A. \(I = 1\)
B. \(I = - 1\)
C. \(I = 2\)
D. \(I = 3\)
A. \(4{\pi ^2}\)
B. \(2\pi \)
C. \(4\pi \)
D. 4
A. \(I = 2 - 2\cos 2m\)
B. \(I = 2\cos 2m - 2\)
C. \(I = 2 - \cos 2m\)
D. \(I = \cos 2m - 2\)
A. I = - 144
B. I = 9
C. I = 144
D. I = -9
A. \(E\left( {1;1;1} \right)\)
B. \(F\left( {1;1;0} \right)\)
C. \(H\left( {7;3;1} \right)\)
D. \(G\left( {4;2;0} \right)\)
A. \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 4\)
B. \({\left( {x + 1} \right)^2} + {y^2} + {z^2} = 2\)
C. \({\left( {x + 1} \right)^2} + {y^2} + {z^2} = 4\)
D. \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 2\)
A. \(m = 2,\,\,n = - 4.\)
B. \(m = 2,\,\,n = 4.\)
C. \(m = 2,\,\,n = - 5.\)
D. \(m = 1,\,\,n = - 4.\)
A. x + y - z = 0
B. - x + y + z = 1
C. x + y - z = 1
D. - x + y + z = 0
A. \(I = - 4\int\limits_0^1 {\sqrt u du} \)
B. \(I = 2\int\limits_0^1 {\sqrt u du} \)
C. \(I = 2\int\limits_1^0 {\sqrt u du} \)
D. \(I = 4\int\limits_0^1 {\sqrt u du} \)
A. \(\int\limits_1^2 {\left| {{3^x} - 1} \right|dx} \)
B. \(\int\limits_0^2 {\left| {{3^x}} \right|dx} \)
C. \(\int\limits_1^2 {{3^x}dx} \)
D. \(\pi \int\limits_1^2 {{9^x}dx} \)
A. \(\left( {3; - 1;1} \right)\)
B. \(\left( {3;1;1} \right)\)
C. \(\left( {3; - 1; - 1} \right)\)
D. \(\left( {3;1; - 1} \right)\)
A. -3
B. -2
C. 3
D. 2
A. \(M\left( {1;4; - 5} \right)\)
B. \(Q\left( { - 1;2;1} \right)\)
C. \(N\left( { - 3; - 4;5} \right)\)
D. \(P\left( {1;2; - 2} \right)\)
A. 5
B. \(2{\left( {\ln 2} \right)^2}\)
C. 7
D. 6
A. \(2\sqrt {10} \)
B. 25
C. 40
D. 5
A. \(I = 2 - 2{e^{\cos 2m}}.\)
B. \(I = 2 - 2{e^{\sin 2m}}.\)
C. \(I = 2{e^{\sin 2m}} + 2.\)
D. \(I = 2{e^{\sin 2m}} - 2.\)
A. \(\left( {0; - 2;3} \right)\)
B. \(\left( {0;0;3} \right).\)
C. \(\left( {2;0;0} \right)\)
D. \(\left( {2;0;3} \right)\)
A. \(2{e^2} - 2\)
B. \(2{e^2} + 2\)
C. \(4{e^2} + 4\)
D. \(4{e^2} - 4\)
A. \(4{\pi ^2}\)
B. \(8{\pi ^2}\)
C. \(2{\pi ^2}\)
D. \(8\pi .\)
A. \(\left( P \right)\parallel \left( R \right)\)
B. \(\left( Q \right)\parallel \left( R \right)\)
C. \(\left( P \right)\) cắt \(\left( Q \right)\).
D. \(\left( Q \right)\) cắt \(\left( R \right)\).
A. \(I = - m{3^m} - J.\)
B. \(I = m{3^m} - J.\)
C. \(I = m{3^m} + J.\)
D. \(I = - m{3^m} + J.\)
A. \(2{x^4} + 3{x^2} + C.\)
B. \(8{x^4} + 6{x^2} + C.\)
C. \(24{x^2} + 6 + C\)
D. \(2{x^3} + 3x + C.\)
A. \({d_1}\parallel {d_2}.\)
B. \({d_1}\) chéo \({d_2}\).
C. \({d_1}\) trùng với \({d_2}\).
D. \({d_1}\) cắt \({d_2}\).
A. \(\left( {0; - 1; - 1} \right)\)
B. \(\left( { - 3; - 6;9} \right)\)
C. \(\left( { - 2;4;6} \right)\)
D. \(\left( {1;2;3} \right)\)
A. x + z = 0.
B. y = 0
C. z = 0
D. x = 0
A. \(\frac{x}{1} = \frac{y}{1} = \frac{{z - 4}}{{ - 2}}\)
B. \(\frac{x}{1} = \frac{y}{1} = \frac{{z + 4}}{2}\)
C. \(\frac{x}{1} = \frac{y}{1} = \frac{{z - 4}}{2}\)
D. \(\frac{x}{1} = \frac{y}{1} = \frac{{z + 4}}{{ - 2}}\)
A. 14
B. 17
C. 11
D. 56
A. \(\left( {3;2} \right)\)
B. \(\left( { - 3;2} \right)\)
C. \(\left( {3; - 2} \right)\)
D. \(\left( { - 3; - 2} \right)\)
A. y + 2 = 0
B. y = 0
C. y - 2 = 0
D. x + z = 5
A. \(60^\circ \)
B. \(45^\circ \)
C. \(90^\circ \)
D. \(30^\circ \)
A. x + z = 0
B. z = 0
C. x - z = 0
D. x = 0
A. \(\frac{x}{2} = \frac{y}{1} = \frac{{z + 1}}{1}\)
B. \(\frac{x}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\)
C. \(\frac{x}{2} = \frac{y}{1} = \frac{{z + 1}}{{ - 1}}\)
D. \(\frac{x}{2} = \frac{y}{1} = \frac{{z - 1}}{1}\)
A. \(\left( {3;2} \right)\)
B. \(\left( { - 3;2} \right)\)
C. \(\left( {3; - 2} \right)\)
D. \(\left( { - 3; - 2} \right)\)
A. 7
B. 6
C. 8
D. 9
A. \(\left( {4;1; - 1} \right)\)
B. \(\left( {2;\dfrac{1}{2}; - \dfrac{1}{2}} \right)\)
C. \(\left( {2; - 1;3} \right)\)
D. \(\left( { - 2;1; - 3} \right)\)
A. 3 + 2i
B. 2 + 3i
C. 2 - 3i
D. 3 - 2i
A. \({x^2} - {e^{x + 1}} + C\)
B. \(\dfrac{{{x^2}}}{2} - \dfrac{{{e^{x + 1}}}}{{x + 1}} + C\)
C. \(1 - {e^x} + C\)
D. \(\dfrac{{{x^2}}}{2} - {e^x} + C\)
A. \(\sqrt {11} \)
B. \(3\sqrt 6 \)
C. \(2\sqrt 3 \)
D. \(\sqrt {15} \)
A. \(\left\{ \begin{array}{l}x = 1 + 2t\\y = - 2 - t\\z = 3 + t\end{array} \right.\,\,\,\left( {t \in R} \right)\)
B. \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + 2t\\z = 1 + 3t\end{array} \right.\,\,\,\left( {t \in R} \right)\)
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 - 2t\\z = 1 + 3t\end{array} \right.\,\,\,\left( {t \in R} \right)\)
D. \(\left\{ \begin{array}{l}x = 1 - 2t\\y = - 2 + t\\z = 3 - t\end{array} \right.\,\,\,\left( {t \in R} \right)\)
A. \(y = \dfrac{1}{3}{x^3} + \cos x\)
B. \(y = 2x + \cos x\)
C. \(y = \dfrac{1}{3}{x^3} - \cos x\)
D. \(y = 2x - \cos x\)
A. \(\left( {1;3;2} \right)\)
B. \(\left( {1; - 3;2} \right)\)
C. \(\left( {1;2;3} \right)\)
D. \(\left( {0; - 3;2} \right)\)
A. \(\sqrt 5 \)
B. \(\sqrt {13} \)
C. 1
D. 5
A. Điểm M.
B. Điểm N.
C. Điểm P.
D. Điểm Q.
A. \(\overrightarrow {{n_1}} = \left( {2; - 1;2} \right)\)
B. \(\overrightarrow {{n_2}} = \left( { - 2;1; - 2} \right)\)
C. \(\overrightarrow {{n_3}} = \left( {4; - 2;4} \right)\)
D. \(\overrightarrow {{n_4}} = \left( {6;3;6} \right)\)
A. 3
B. -3
C. 2
D. \(\dfrac{3}{2}\)
A. \(\left( { - 2;1; - 3} \right)\)
B. \(\left( {2; - 1; - 3} \right)\)
C. \(\left( {2;1; - 3} \right)\)
D. \(\left( { - 2;1;3} \right)\)
A. 12
B. -1
C. -5
D. 5
A. \( - \dfrac{4}{9}\)
B. \( - \dfrac{9}{4}\)
C. \(\dfrac{4}{9}\)
D. \(\dfrac{9}{4}\)
A. \(\dfrac{{2\sqrt {30} }}{5}\)
B. 12
C. \(\dfrac{{13}}{{\sqrt {30} }}\)
D. \(\sqrt {30} \)
A. \(\left( { - 2; - 1} \right)\)
B. \(\left( { - 2; - 2} \right)\)
C. \(\left( {2; - 2} \right)\)
D. \(\left( {2; - 1} \right)\)
A. \(\dfrac{{x + 3}}{2} = \dfrac{{y + 1}}{{ - 1}} = \dfrac{{z - 1}}{2}\)
B. \(\dfrac{{x - 2}}{3} = \dfrac{{y + 1}}{1} = \dfrac{{z - 2}}{{ - 1}}\)
C. \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z + 1}}{2}\)
D. \(\dfrac{{x - 3}}{2} = \dfrac{{y - 1}}{{ - 1}} = \dfrac{{z + 1}}{2}\)
A. 6 - 5i
B. 2 - 5i
C. 4 - 2i
D. - 6 - 4i
A. \(z + \overline z = 2bi\)
B. \(z - \overline z = 2a\)
C. \(z.\overline z = {a^2} - {b^2}\)
D. \(\left| z \right| = \left| {\overline z } \right|\)
A. \(\dfrac{{x - 1}}{1} = \dfrac{y}{3} = \dfrac{{z + 2}}{2}\)
B. \(\dfrac{{x + 1}}{1} = \dfrac{y}{3} = \dfrac{{z - 2}}{2}\)
C. \(\dfrac{{x - 1}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z - 2}}{1}\)
D. \(\dfrac{{x + 1}}{{ - 2}} = \dfrac{y}{3} = \dfrac{{z + 2}}{1}\)
A. 4
B. 9
C. 15
D. 0
A. -3
B. -1
C. 1
D. 0
A. \(\int\limits_1^e {{t^2}dt} \)
B. \(\int\limits_1^2 {{t^2}dt} \)
C. \(\int\limits_1^4 {{t^2}dt} \)
D. \(\int\limits_1^2 {{{\left( {1 + t} \right)}^2}dt} \)
A. 1
B. -3
C. 9
D. -9
A. \({\left( {x + 3} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = 5\)
B. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 25\)
C. \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 10} \right)^2} = 25\)
D. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 5\)
A. 0
B. 1
C. 2
D. 4
A. \(\left( {{d_1}} \right)\parallel \left( {{d_2}} \right)\)
B. \(\left( {{d_1}} \right) \equiv \left( {{d_2}} \right)\)
C. \(\left( {{d_1}} \right) \bot \left( {{d_2}} \right)\)
D. \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\)chéo nhau.
A. \(\dfrac{x}{2} + \dfrac{y}{3} + \dfrac{z}{1} = 1\)
B. 2x - 3y + z = 1
C. 3x - 2y + 6z = 1
D. 3x - 2y + 6z - 6 = 0
A. 10
B. 7
C. 6
D. 8
A. \(6\sqrt 6 \)
B. \(2\sqrt 6 \)
C. \(\dfrac{{\sqrt 6 }}{3}\)
D. \(\dfrac{{4\sqrt 6 }}{3}\)
A. \(\dfrac{3}{2}\)
B. 3
C. \(\dfrac{5}{2}\)
D. 6
A. 0
B. 4
C. 5
D. 9
A. 3x + z = 0
B. 3x + y = 0
C. x + 3z = 0
D. 3x - z = 0
A. 150
B. 180
C. 246
D. 250
A. 5
B. -2
C. -5
D. 0
A. a - b
B. b - a
C. a + b
D. -a - b
A. 42
B. 27
C. 21
D. 18
A. \(\pi \sqrt {11} \)
B. \(3\pi \)
C. \(\pi \sqrt {15} \)
D. \(\pi \sqrt 7 \)
A. \(\dfrac{2}{3}\)
B. \(\dfrac{3}{2}\)
C. \(\dfrac{{16}}{3}\)
D. \(\dfrac{3}{{16}}\)
A. 70
B. 126
C. 172
D. 280
A. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)
B. \(\int\limits_a^b {\left| {{f^2}\left( x \right) - {g^2}\left( x \right)} \right|dx} \)
C. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} } \right|\)
D. \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} \)
A. \(\mathop u\limits^ \to = \left( {7; - 4; - 5} \right)\)
B. \(\mathop u\limits^ \to = \left( {5; - 4; - 7} \right)\)
C. \(\mathop u\limits^ \to = \left( {4;5; - 7} \right)\)
D. \(\mathop u\limits^ \to = \left( {14;8; - 10} \right)\)
A. \(I\left( { - 1;3;2} \right),\,\,R = 9\)
B. \(I\left( { - 1;3;2} \right),\,\,R = 3\)
C. \(I\left( {1;3;2} \right),\,\,R = 3\)
D. \(I\left( {1; - 3; - 2} \right),\,\,R = 9\)
A. \(2 - i\)
B. \( - 1 - 2i\)
C. \( - 1 + 2i\)
D. \(1 + 2i\)
A. \(\overrightarrow {AB} = \left( { - 4;2;5} \right)\)
B. \(\overrightarrow {AB} = \left( {1;1;\frac{1}{2}} \right)\)
C. \(\overrightarrow {AB} = \left( {2;2;1} \right)\)
D. \(\overrightarrow {AB} = \left( {4; - 2; - 5} \right)\)
A. x + 2y - z + 4 = 0
B. 2x - y - z + 4 = 0
C. 2x + y - z - 4 = 0
D. 2x + y + z - 4 = 0
A. \(4{x^4} + C\)
B. \(12{x^2} + C\)
C. \(\frac{{{x^4}}}{4} + C\)
D. \({x^4} + C\)
A. \(\int {{e^x}dx} = - {e^x} + C\)
B. \(\int {dx} = x + C\)
C. \(\int {\frac{1}{x}dx} = - \ln x + C\)
D. \(\int {\cos xdx} = - \sin x + C\)
A. 2
B. 10
C. 3
D. 4
A. \(\left( S \right):x + y + z + 5 = 0\)
B. \(\left( Q \right):x - 1 = 0\)
C. \(\left( R \right):x + y - 7 = 0\)
D. \(\left( P \right):z - 2 = 0\)
A. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9\)
B. \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 3\)
C. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 3\)
D. \({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 3} \right)^2} = 9\)
A. 4x - 5y - 4 = 0
B. 4x - 5z - 4 = 0
C. 4x - 5y + 4 = 0
D. 4x - 5z + 4 = 0
A. \(z = \frac{2}{5} + \frac{4}{5}i\)
B. \(z = \frac{1}{2} + \frac{1}{2}i\)
C. \(z = \frac{4}{5} + \frac{2}{5}i\)
D. \(z = 1 + \frac{1}{2}i\)
A. y + 2 = 0
B. x + z - 1 = 0
C. y - 2 = 0
D. y + 1 = 0
A. 2
B. \(\frac{4}{3}\)
C. \(\frac{{20}}{3}\)
D. \(\frac{{ - 4}}{3}\)
A. 9
B. -9
C. 5
D. -5
A. \(S = 3\sqrt 2 \)
B. \(S = 2\sqrt 6 \)
C. \(S = 4\sqrt 3 \)
D. \(S = 2\sqrt {14} \)
A. \(d\left( {\left( P \right),\left( Q \right)} \right) = 5\)
B. \(d\left( {\left( P \right),\left( Q \right)} \right) = 3\)
C. \(d\left( {\left( P \right),\left( Q \right)} \right) = 1\)
D. \(d\left( {\left( P \right),\left( Q \right)} \right) = 4\)
A. \(\frac{1}{z} = \frac{1}{4} + \frac{{\sqrt 3 }}{4}i\)
B. \(\frac{1}{z} = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\)
C. \(\frac{1}{z} = \frac{1}{2} + \frac{{\sqrt 3 }}{2}i\)
D. \(\frac{1}{z} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i\)
A. I = 0
B. I = 1
C. I = 2019
D. \(I = \frac{1}{{2019}}\)
A. \(I = \frac{1}{2}{e^{4038}}\)
B. \(I = \frac{1}{2}{e^{4038}} - 1\)
C. \(I = \frac{1}{2}\left( {{e^{4038}} - 1} \right)\)
D. \(I={e^{4038}} - 1\)
A. x - y + 1 = 0
B. x - y - 3 = 0
C. x + z - 3 = 0
D. x + y - 3 = 0
A. 20
B. -4
C. 16
D. 4
A. \( - x\cos x - \sin x + C\)
B. \(x\cos x - \sin 2x + C\)
C. \( - x\cos x + \sin x + C\)
D. \(x\cos x - \sin x + C\)
A. \(\left( {2; - 5} \right)\)
B. \(\left( {5;2} \right)\)
C. \(\left( {2;5} \right)\)
D. \(\left( { - 2;5} \right)\)
A. \(\frac{5}{2}\)
B. \(\frac{{21}}{2}\)
C. \(\frac{{26}}{2}\)
D. \(\frac{7}{2}\)
A. \(\Delta :\frac{{x - 2}}{{ - 2}} = \frac{y}{1} = \frac{{z - 1}}{{ - 2}}\)
B. \(\Delta :\frac{{x - 3}}{{ - 2}} = \frac{{y + 2}}{1} = \frac{{z - 5}}{{ - 2}}\)
C. \(\Delta :\frac{{x + 1}}{{ - 2}} = \frac{y}{1} = \frac{{z - 1}}{{ - 2}}\)
D. \(\Delta :\frac{{x - 2}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 2}}\)
A. \(x = \frac{{11}}{3},y = - \frac{1}{3}\)
B. \(x = - \frac{{11}}{3},y = \frac{1}{3}\)
C. \(x = 1,y = 3\)
D. \(x = - 1,y = - 3\)
A. \(\int {f\left( x \right)dx} = 5{e^{5x - 3}} + C\)
B. \(\int {f\left( x \right)dx} = \frac{1}{5}{e^{5x - 3}} + C\)
C. \(\int {f\left( x \right)dx} = {e^{5x - 3}} + C\)
D. \(\int {f\left( x \right)dx} = - \frac{1}{3}{e^{5x - 3}} + C\)
A. \(B\left( {3; - 4} \right)\)
B. \(B\left( {4;3} \right)\)
C. \(B\left( {3;4} \right)\)
D. \(B\left( {4; - 3} \right)\)
A. \(\frac{{x - 1}}{1} = \frac{y}{1} = \frac{z}{2}\)
B. \(\frac{{x + 1}}{1} = \frac{y}{1} = \frac{z}{2}\)
C. \(\frac{x}{1} = \frac{{y - 1}}{1} = \frac{{z + 2}}{2}\)
D. \(\frac{x}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{2}\)
A. -8
B. \(8 + 6i\)
C. 10
D. \( - 8 + 6i\)
A. S = 0
B. \(S = - \frac{3}{2}\)
C. S = 1
D. \(S = \frac{1}{2}\)
A. \(\overrightarrow u = \left( { - 5;7;9} \right)\)
B. \(\overrightarrow u = \left( { - 5;7; - 9} \right)\)
C. \(\overrightarrow u = \left( { - 1;3; - 4} \right)\)
D. \(\overrightarrow u = \left( { - 3;7; - 9} \right)\)
A. I = -1
B. \(I = \frac{1}{2}\)
C. \(I =- \frac{1}{2}\)
D. I = 1
A. T = 0
B. T = -1
C. T = -2
D. T = 2
A. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)
B. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)
C. \(\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\)
D. \(\frac{{x - 2}}{2} = \frac{{y + 2}}{2} = \frac{{z - 3}}{2}\)
Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).
Copyright © 2021 HOCTAPSGK