Giải các phương trình:
a) \(5x^2 - 3x +1 = 2x+11 \Leftrightarrow 5x^2 -5x-10= 0 \Leftrightarrow x^2 -x-2=0 \) Ta có a-b+c = 1-(-1) - 2= 0 nên phương trình có hai nghiệm:
\(x_1=-1; x _2=2\)
Vậy S= {-1;2}
b) \(\dfrac{x^2}{5}- \dfrac{2x}{3}= \dfrac{x+5}{6} \Leftrightarrow 6x^2 - 20x = 5x+25 \)
\( \Leftrightarrow 6x^2 - 25x -25=0\\ \Delta = 25^2 +4.6.25=1225>0\)
Phương trình có nghiệm: \(x_1 = 5; x_2 = -\dfrac{5}{6}\)
Vậy S= {\( 5; -\dfrac{5}{6}\)}
d) Điều kiện \( x \neq \pm \dfrac{1}{3}\)
\(\dfrac{x+ 0,5}{3x+1}= \dfrac{7x+2}{9x^2-1} \Leftrightarrow \dfrac{x+0,5}{3x+1}= \dfrac{7x+2}{(3x-1)(3x+1)} \Leftrightarrow (x+0,5)(3x-1)= 7x+2\) \(\Leftrightarrow (x+0,5)(3x-1) = 7x+2 \Leftrightarrow 6x^2+x-1 = 14x+4\)
\(\Leftrightarrow 6x^2-13x-5 = 0\\ \Delta 6x^2 -13x-5=0\\\Delta = 169+120 = 289>0\)
Phương trình có hai nghiệm: \(x_1 = \dfrac{5}{2}; x_2= -\dfrac{1}{3}(loại)\)
Vậy phương trình có một nghiệm: \(x= \dfrac{5}{2}\)
e) \(2\sqrt{3}x^2 +x+1 = \sqrt{3}(x+1) \Leftrightarrow 2 \sqrt{3}x^2 - (\sqrt{3}-1)x+1 - \sqrt{3}=0\\\Delta= (\sqrt{3}-1)^2- 8\sqrt{3}(1-\sqrt{3})= 4- 2\sqrt{3}- 8\sqrt{3}+24= 25 - 2.5\sqrt{3}+3= (5-\sqrt{3})^2\) \( \sqrt{\Delta} = 5-\sqrt{3}\)
Phương trình có hai nghiệm: \(x_1 = \dfrac{\sqrt{3}-1+5-\sqrt{3}}{4\sqrt{3}}= \frac{\sqrt{3} }{3}\\x_2 = \dfrac{\sqrt{3}-1+5+\sqrt{3}}{4\sqrt{3}}= \frac{1-\sqrt{3} }{3}\)
Vậy S= {\( \frac{\sqrt{3} }{3} ; \frac{1-\sqrt{3} }{3}\)}
f)
\(x^2+ 2\sqrt{2}x+4 = 3(x+\sqrt{2}) \Leftrightarrow x^2 + (2\sqrt{2}-3)x+4-3\sqrt{2}=0\\\Delta = ( 2\sqrt{2}-2)^2-4(4-3\sqrt{2})\\ = 8 - 12\sqrt{12}+9-16+12\sqrt{2}=1\)
Phương trình có hai nghiệm: \( x_1 = \dfrac{3-2\sqrt{2}+1}{2}= 2-\sqrt{2}\\ x_ 2= \dfrac{3-2\sqrt{2}-1}{2}= 1-\sqrt{2}\)
Vậy S={\( 2-\sqrt{2}; 1-\sqrt{2}\)}
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK