Giải các phương trình:
a) \(5{{\rm{x}}^2} - 3{\rm{x}} + 1 = 2{\rm{x}} + 11\)
b) \({{{x^2}} \over 5} - {{2{\rm{x}}} \over 3} = {{x + 5} \over 6}\)
c) \({x \over {x - 2}} = {{10 - 2{\rm{x}}} \over {{x^2} - 2{\rm{x}}}}\)
d) \({{x + 0,5} \over {3{\rm{x}} + 1}} = {{7{\rm{x}} + 2} \over {9{{\rm{x}}^2} - 1}}\)
e) \(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)
f) \({x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right)\)
Đưa phương trình đã cho về dạng: \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.
Lời giải chi tiết
a)
\(\eqalign{
& 5{{\rm{x}}^2} - 3{\rm{x}} + 1 = 2{\rm{x}} + 11 \cr
& \Leftrightarrow 5{{\rm{x}}^2} - 5{\rm{x}} - 10 = 0 \cr
& \Leftrightarrow {x^2} - x - 2 = 0 \cr}\)
Phương trình có \(a – b + c = 1 + 1 – 2 = 0\) nên có 2 nghiệm \({x_1}= -1; {x_2}= 2\)
b)
\(\eqalign{
& {{{x^2}} \over 5} - {{2{\rm{x}}} \over 3} = {{x + 5} \over 6} \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 20{\rm{x}} = 5{\rm{x}} + 25 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 25{\rm{x}} - 25 = 0 \cr
& \Delta = {25^2} + 4.6.25 = 1225 \cr
& \sqrt \Delta = 35 \Rightarrow {x_1} = 5;{x_2} = - {5 \over 6} \cr} \)
Vậy phương trình có 2 nghiệm phân biệt \({x_1} = 5;{x_2} = - {5 \over 6}\)
c) \({x \over {x - 2}} = {{10 - 2{\rm{x}}} \over {{x^2} - 2{\rm{x}}}}\) ĐKXĐ: \(x ≠ 0; x ≠ 2\)
\(\eqalign{
& \Leftrightarrow {x^2} = 10 - 2{\rm{x}} \cr
& \Leftrightarrow {x^2} + 2{\rm{x}} - 10 = 0 \cr
& \Delta ' = 1 + 10 = 11 \cr
& \Rightarrow {x_1} = - 1 + \sqrt {11} (TM) \cr
& {x_2} = - 1 - \sqrt {11} (TM) \cr} \)
Vậy phương trình đã cho có 2 nghiệm phân biệt \({x_1} = - 1 + \sqrt {11},{x_2} = - 1 - \sqrt {11}\)
d) \({{x + 0,5} \over {3{\rm{x}} + 1}} = {{7{\rm{x}} + 2} \over {9{{\rm{x}}^2} - 1}}\) ĐKXĐ: \(x \ne \pm {1 \over 3}\)
\(\eqalign{
& \Leftrightarrow {{2{\rm{x}} + 1} \over {3{\rm{x}} + 1}} = {{14{\rm{x}} + 4} \over {9{{\rm{x}}^2} - 1}} \cr
& \Leftrightarrow \left( {2{\rm{x}} + 1} \right)\left( {3{\rm{x}} - 1} \right) = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} + x - 1 = 14{\rm{x}} + 4 \cr
& \Leftrightarrow 6{{\rm{x}}^2} - 13{\rm{x}} - 5 = 0 \cr
& \Delta = {( - 13)^2} - 4.6.( - 5) = 289 \cr
& \sqrt \Delta = \sqrt {289} = 17 \cr
& \Rightarrow {x_1} = {5 \over 2}(TM) \cr
& {x_2} = - {1 \over 3}(loại) \cr} \)
Vậy phương trình đã cho có 1 nghiệm duy nhất: \({x_1} = {5 \over 2}\)
e)
\(\begin{array}{l}
2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\\
\Leftrightarrow 2\sqrt 3 {x^2} - \left( {\sqrt 3 - 1} \right)x + 1 - \sqrt 3
\end{array}\)
\(\begin{array}{l}
\Delta = {\left( {\sqrt 3 - 1} \right)^2} - 8\sqrt 3 \left( {1 - \sqrt 3 } \right)\\
\Delta = 3 - 2\sqrt 3 + 1 - 8\sqrt 3 + 24\\
= 28 - 10\sqrt 3 \\
= {5^2} - 2.5.\sqrt 3 + {\left( {\sqrt 3 } \right)^2}\\
= {\left( {5 - \sqrt 3 } \right)^2}
\end{array}\)
\(\begin{array}{l}
{x_1} = \frac{{\sqrt 3 - 1 - 5 + \sqrt 3 }}{{4\sqrt 3 }} = \frac{{1 - \sqrt 3 }}{2}\\
{x_2} = \frac{{\sqrt 3 - 1 + 5 - \sqrt 3 }}{{4\sqrt 3 }} = \frac{{\sqrt 3 }}{3}
\end{array}\)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
f)
\(\eqalign{
& {x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right) \cr
& \Leftrightarrow {x^2} + \left( {2\sqrt 2 - 3} \right)x + 4 - 3\sqrt 2 = 0 \cr
& \Delta = 8 - 12\sqrt 2 + 9 - 16 + 12\sqrt 2 = 1 \cr
& \sqrt \Delta = 1 \cr
& \Rightarrow {x_1} = {{3 - 2\sqrt 2 + 1} \over 2} = 2 - \sqrt 2 \cr
& {x_2} = {{3 - 2\sqrt 2 - 1} \over 2} = 1 - \sqrt 2 \cr} \)
Vậy phương trình đã cho có 2 nghiệm phân biệt.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK