Cho tam giác ABC vuông tại A, biết AB = 3cm; AC = 4cm, phân giác của hai góc B và C cắt nhau tại I. Vẽ IH, IK lần lượt vuông góc với AB và AC. Tính khoảng cách từ I đến các cạnh của tam giác.
Cách 1:
Ta có \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{3^2} + {4^2}} = 5\) (cm) (định lý Pytago).
AI là phân giác của \(\widehat A\) \( \Rightarrow {\widehat A_1} = {\widehat A_2} = \dfrac{{\widehat A}}{2} = {45^0}.\)
Do đó \(\Delta AHI\) và \(\Delta AKI\) là các tam giác vuông cân \( \Rightarrow AH = IH\) và \(AK = IK.\)
Mặt khác vì I thuộc phân giác góc A nên \(IH = IK \Rightarrow IH = IK = AK = AH.\)
Kẻ \(I{\rm{D}} \bot BC\), ta cũng có \(I{\rm{D}} = IH\).
Gọi ba cạnh của tam giác ABC là a, b, c. Đặt \(AH = x\) ta có \(BH = B{\rm{D}} = c - x\);
Tương tự \(CK = C{\rm{D}} = b - x,\) mà \(a = B{\rm{D}} + C{\rm{D}}\) nên \(a = c - x + b - x \)
\(\Rightarrow x = \dfrac{{b + c - a} }{ 2} = \dfrac{{4 + 3 - 5} }{2} = 1\) (cm).
Vậy \(HI = I{\rm{D}} = IK = x = 1\) (cm).
Cách 2:
\(IH = IK = I{\rm{D}} = x;\)\(\;{S_{\Delta ABC}} = \dfrac{{AB.AC} }{ 2} = 6.\)
\(\eqalign{ {S_{\Delta ABC}} &= {S_{\Delta AIC}} + {S_{\Delta AIB}} + {S_{\Delta BIC}} \cr&= {1 \over 2}IK.AC + {1 \over 2}IA.AB \cr & {\rm{ }} = {x \over 2}(ac + ab + bc) = 6x \cr} \)
\(\Rightarrow x = 1. \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK