Bài 2. Cho tam giác ABC vuông tại A. Một đường thẳng cắt hai cạnh AB, AC ở D và E. Chứng minh: \(C{D^2} - C{B^2} = E{D^2} - E{B^2}.\)
Bài 1.
Ta có \(AH \bot BC\)(giả thiết) nên \(\Delta AHC\) vuông tại H.
Khi đó \(A{C^2} = A{H^2} + C{H^2}\)(định lí Pytago)
\( = {12^2} + {16^2} = 400\)
\( \Rightarrow AC = \sqrt {400} = 20\,(cm)\)
Tương tự ta xét tam giác vuông AHB ta có
\( \Rightarrow C{D^2} - C{B^2} = E{D^2} - E{B^2}.\) \(B{H^2} = A{B^2} - A{H^2}\)
\( \Rightarrow BH = \sqrt {25} = 5\)(cm)\( = {13^2} - {12^2} = 25\).
Vậy \(BC = BH + HC = 5 + 16 = 21\)(cm)
Bài 2.
Nối C với D, E với B. Xét tam giác vuông CAD và ABC ta có
\(\eqalign{ & C{D^2} = D{A^2} + C{A^2} \cr & C{B^2} = B{A^2} + C{A^2} \cr} \)
\( \Rightarrow C{D^2} - {\bf{C}}{B^2} = D{A^2} - B{A^2}\) (1)
Tương tạ xét tam giác vuông ADE và ABE \(\eqalign{ & E{D^2} = D{A^2} + A{E^2} \cr & E{B^2} = A{E^2} + A{B^2} \cr} \)
\( \Rightarrow E{D^2} - E{B^2} = D{A^2} - B{A^2}\) (2)
Từ (1) và (2) \( \Rightarrow C{D^2} - C{B^2} = E{D^2} - E{B^2}.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK