Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho tam giác \(ABC\) nội tiếp đường tròn. \(P,\, Q,\, R\) theo thứ tự là các điểm chính giữa các cung bị chắn \(BC, \, CA, \,AB\) bởi các góc \(A, \,B,\, C\).

a) Chứng minh \(AP \bot QR.\)

b) \(AP\) cắt \(CR\) tại \(I\). Chứng minh tam giác \(CPI\) là tam giác cân.

Hướng dẫn giải

+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.

+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

Lời giải chi tiết

                        

a) Gọi giao điểm của \(AP\) và \(QR\) là \(K\). 

 \(\widehat{AKR}\) là góc có đỉnh ở bên trong đường tròn chắn cung \(AR\) và \(QP\) nên:  \( \widehat{AKR}=\frac{sđ\overparen{AR}+sđ\overparen{QC}+sđ\overparen{CP}}{2}=\frac{sđ\overparen{AB}+sđ\overparen{AC}+sđ\overparen{BC}}{4}=90^0.\)

Vậy \(\widehat{AKR} = 90^0\) hay \(AP \bot QR\)

b) \(\widehat{CIP}\)  là góc có đỉnh ở bên trong đường tròn chắn cung \(AR\)  và \(CP\) nên: \(\widehat{CIP}=\frac{sđ\overparen{AR}+sđ\overparen{CP}}{2}\)    (1)

\(\widehat {PCI}\) góc nội tiếp chắn cung \(PR\), nên \(\widehat {PCI}=\frac{sđ\overparen{RB}+sđ\overparen{BP}}{2}\)    (2) 

Theo giả thiết thì cung \(\overparen{AR} = \overparen{RB}\)  (3)

Cung \(\overparen{CP} = \overparen{BP}\)        (4)

Từ (1), (2), (3), (4) suy ra: \(\widehat {CIP}=\widehat {PCI}\). Do đó \(∆CPI\) cân.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK