Trên một đường tròn, lấy liên tiếp ba cung \(AC, CD, DB\) sao cho
\(sđ\overparen{AC}=sđ\overparen{CD}=sđ\overparen{DB}=60^0\). Hai đường thẳng \(AC\) và \(BD\) cắt nhau tại \(E\). Hai tiếp tuyến của đường tròn tại \(B\) và \(C\) cắt nhau tại \(T\). Chứng minh rằng:
a) \(\widehat {AEB}=\widehat {BTC}\);
b) \(CD\) là phân giác của \(\widehat{BCT}.\)
+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.
+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
Lời giải chi tiết
a) Ta có \(\widehat{AEB}\) là góc có đỉnh ở bên ngoài đường tròn chắn cung \(CD\) và \(AB\) nên:
\(\widehat{AEB}=\frac{sđ\overparen{AB}- sđ\overparen{CD}}{2}={{({{180}^0} + {{60}^0}) - ({{60}^0} + {{60}^0})} \over 2} = {60^0}.\)
và \(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn chắn cung \(BC\) lớn và \(BC\) nhỏ (hai cạnh đều là tiếp tuyến của đường tròn) nên:
\(\widehat{BTC}=\frac{\widehat {BAC}-\widehat {BDC}}{2}={{({{180}^0} + {{60}^0}) - ({{60}^0} + {{60}^0})} \over 2} = {60^0}.\)
Vậy \(\widehat {AEB} =\widehat {BTC}=60^0.\)
b) \(\widehat {DCT} \) là góc tạo bởi tiếp tuyến và dây cung chắn cung \(CD\) nên:
\(\widehat {DCT}=\frac{sđ\overparen{CD}}{2}=\frac{60^0}{2}=30^0.\)
\(\widehat {DCB}\) là góc nội tiếp chắn cung \(BD\) nên: \(\widehat {DCB}=\frac{sđ\overparen{DB}}{2}={{{{60}^0}} \over 2} = {30^0}.\)
Vậy \(\widehat {DCT}=\widehat {DCB}=30^0\) hay \(CD\) là phân giác của \(\widehat {BCT}. \)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK