Tìm \(x\) và \(y\) trong mỗi hình sau:
a) Dùng hệ thức liên quan đến đường cao và hình chiếu \(h^2=b'.c'\), biết \(b',\ c'\) tính được \(h\).
b) +) Dùng hệ thức liên quan đến đường cao và hai cạnh góc vuông \(\dfrac{1}{h^2}=\dfrac{1}{b^2}+\dfrac{1}{c^2}\) để tính \(h\).
+) Dùng định lí Pytago trong tam giác vuông(\(\Delta{AHF}\)).
c) Dùng hệ thức liên quan đến đường cao và hình chiếu \(h^2=b'.c'\), biết \(h,\ b'\) tính được \(c'\).
+) Dùng định lí Pytago trong tam giác vuông(\(\Delta{PNH}\)).
Lời giải chi tiết
Đặt tên các điểm như hình vẽ:
Xét \(\Delta{ABC}\) vuông tại \(A\), đường cao \(AH\). Áp dụng hệ thức \(h^2=b'.c'\), ta được:
\(AH^2=BH.CH \)
\(\Leftrightarrow x^2=4.9=36\)
\(\Leftrightarrow x=\sqrt{36}=6\)
Vậy \(x=6\)
b) Đặt tên các điểm như hình vẽ
Xét \(\Delta{DEF}\) vuông tại \(D\), đường cao \(DH\). Áp dụng hệ thức \(\dfrac{1}{h^2}=\dfrac{1}{b^2}+\dfrac{1}{c^2}\), ta được:
\(\dfrac{1}{DH^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\) \(\Leftrightarrow \dfrac{1}{2^2}=\dfrac{1}{y^2}+\dfrac{1}{y^2}\)
\(\Leftrightarrow \dfrac{1}{4}=\dfrac{2}{y^2}\)
\(\Leftrightarrow y^2=4.2=8\)
\(\Leftrightarrow y=\sqrt 8=2\sqrt 2\).
Xét \(\Delta{DHF}\) vuông tại \(H\). Áp dụng định lí Pytago, ta có:
\(DF^2=DH^2+HF^2 \Leftrightarrow (2\sqrt 2)^2=2^2+x^2\)
\(\Leftrightarrow 8=4+x^2\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x=\sqrt 4=2\)
Vậy \(x= 2,\ y=2\sqrt 2\).
c) Đặt tên các điểm như hình vẽ:
Xét \(\Delta{MNP}\) vuông tại \(P\), đường cao \(AH\). Áp dụng hệ thức \(h^2=b'.c'\), ta được:
\(PH^2=HM.HN \Leftrightarrow 12^2=16.x\)
\(\Leftrightarrow 144=16.x\)
\(\Leftrightarrow x=\dfrac{144}{16}=9\)
Xét \(\Delta{PHN}\) vuông tại \(H\). Áp dụng định lí Pytago, ta có:
\(PN^2=PH^2+HN^2 \Leftrightarrow y^2=12^2+9^2\)
\(\Leftrightarrow y^2=144+81=225\)
\(\Leftrightarrow y= \sqrt{225}=15\)
Vậy \(x=9,\ y=15\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK