Xác định toạ độ giao điểm của parabol \(y = {\rm{a}}{{\rm{x}}^2} + bc + c\) với trục tung. Tìm điều kiện để parabol này cắt trục hoành tại hai điểm phân biệt, tại một điểm và viết toạ độ của các giao điểm trong mỗi trường hợp.
Ta biết trục tung có phương trình là: x = 0. Vì vậy gọi B(x; y) là giao điểm của parabol \(y = {\rm{a}}{{\rm{x}}^2} + bc + c\) với trục tung thì x, y là nghiệm của hệ phương trình:
\(\left\{ \begin{array}{l}x = 0\\y = {\rm{a}}{{\rm{x}}^2} + bc + c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = c\end{array} \right. \Rightarrow B(0;c).\)
Ta đã biết trục hoành có phương trình là: y = 0, do đó toạ độ giao điểm (x; y) (nếu có) của parabol \(y = {\rm{a}}{{\rm{x}}^2} + bx + c\) và trục hoành là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}y = 0\\y = a{x^2} + bx + c = 0\end{array} \right.\,(*)\)
Hệ (*) tương đương với hệ \(\left\{ \begin{array}{l}y = 0\\a{x^2} + bx + c = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\end{array} \right.\,\)
+ Nếu \(\Delta = {b^2} - 4ac\, < 0,\) tức là (1) vô nghiệm hay hệ (*) vô nghiệm ta suy ra hai đường không có điểm chung.
+ Nếu \(\Delta = {b^2} - 4ac\, = 0,\)khi đó hệ (*) tương đương với hệ \(\left\{ \begin{array}{l}y = 0\\x = - \frac{b}{{2a}}\end{array} \right.\)
Ta suy ra parabol \(y = {\rm{a}}{{\rm{x}}^2} + bx + c\) và trục Ox có đúng một giao điểm là \(D = \left( { - \frac{b}{{2a}};0} \right)\) (lưu ý điểm này chính là đỉnh của parabol. Khi này ta có parabol là trục hoành tiếp xúc với nhau)
+ Nếu \(\Delta = {b^2} - 4ac\,\, > 0,\)khi đó (1) có hai nghiệm phân biệt:
\(x = \frac{{ - b - \sqrt \Delta }}{{2a}}\) hoặc \(x = \frac{{ - b + \sqrt \Delta }}{{2a}}\)
Nên hệ (*) tương đương với:
\(\left\{ \begin{array}{l}x = \frac{{ - b - \sqrt \Delta }}{{2a}}\\y = 0\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}x = \frac{{ - b + \sqrt \Delta }}{{2a}}\\y = 0\end{array} \right.\)
Hay parabol \(y = {\rm{a}}{{\rm{x}}^2} + bx + c\) và trục hoành có hai giao điểm
\({A_1}\left( {\frac{{ - b - \sqrt \Delta }}{{2a}};0} \right),{A_2}\left( {\frac{{ - b + \sqrt \Delta }}{{2a}};0} \right)\)
-- Mod Toán 10
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm thứ nhất ở cấp trung học phổ thông, năm đầu tiên nên có nhiều bạn bè mới đến từ những nơi xa hơn vì ngôi trường mới lại mỗi lúc lại xa nhà mình hơn. Được biết bên ngoài kia là một thế giới mới to và nhiều điều thú vị, một trang mới đang chò đợi chúng ta.
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK