Chứng minh rằng:
a) \(\small 11^{10} - 1\) chia hết cho 100;
b) \(\small 101^{100} - 1\) chia hết cho 10 000;
c) \(\small \sqrt{10}[(1+\sqrt{10})^{100}-(1-\sqrt{10})^{100}]\) là một số nguyên.
Câu a:
Ta có:
\(11^{10}- 1 = (1 + 10)^{10} =C_{10}^{0}.10^{10}+C_{10}^{1}.10^9+...\)\(+ C_{10}^{8}.10^2+C_{10}^{9}.10+C_{10}^{10}\)
\(=100(C_{10}^{0}.10^8+C_{10}^{1}.10^7+...+ C_{10}^{8}+1)+1\)
Tổng sau cùng chia hết cho 100 suy ra 1110 – 1 chia hết cho 100.
Câu b:
Ta có \(101^{100}=(100+1)^{100}=C_{100}^{0}.100^{100}\)
\(+C_{100}^{1}.100^{99}+...+ C_{100}^{99}.100+C_{100}^{100}\)
\(=100^2\left [ C_{100}^{0}.100^{98}+C_{100}^{1}.100^{97}+...+1 \right ]\)
Vậy \(101^{100}=10000\left [ C_{100}^{0}.100^{98}+C_{100}^{1}.100^{97}+...+1 \right ]\) chia hết cho 10 000.
Câu c:
Ta có \((1+\sqrt{10})^{100}=C_{100}^{0}+C_{100}^{1}\sqrt{10}+C_{100}^{2}\sqrt{10^2}+...+\)\(C_{100}^{99}\sqrt{10^{99}}+C_{100}^{100}\)
\((1-\sqrt{10})^{100}=C_{100}^{0}+C_{100}^{1}\sqrt{10}+C_{100}^{2}\sqrt{10^2}+...-\)\(C_{100}^{99}\sqrt{10^{99}}+C_{100}^{100}\)
Do đó: \((1+\sqrt{10})^{100}-(1-\sqrt{10})^{100}=2 \left ( C_{100}^{0}+C_{100}^{1}\sqrt{10}+C_{100}^{2}\sqrt{10^2}+...+ C_{100}^{99}\sqrt{10^{99}}\right )\)
Vậy nên: \(\sqrt{40}\left [ (1+\sqrt{10})^{100}-(1-\sqrt{10})^{100} \right ].\)
-- Mod Toán 11
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK