Cho các hàm số:
y = 2x – 2 (d1)
y = - (4/3).x – 2 (d2)
y = (1/3).x + 3 (d3)
a. Vẽ đồ thị các hàm số đã cho trên cùng một mặt phẳng tọa độ.
b. Gọi giao điểm của đường thẳng (d3) với (d1) và (d2) theo thứ tự là A và B. Tìm tọa độ của A, B.
c. Tính khoảng cách AB.
a. *Vẽ đồ thị hàm số y = 2x – 2 (d1)
Cho x = 0 thì y = -2. Ta có: (0; -2)
Cho y = 0 thì 2x – 2 = 0 ⇔ 2x = 2 ⇔ x = 1. Ta có: (1; 0)
Đồ thị hàm số đi qua hai điểm (0; -2) và (1; 0)
*Vẽ đồ thị hàm số y = - (4/3).x – 2 (d2)
Cho x = 0 thì y = -2. Ta có: (0; -2)
Cho y = 0 thì - (4/3).x – 2 = 0 ⇔ x = -1,5. Ta có: (-1,5; 0)
Đồ thị hàm số đi qua hai điểm (0; -2) và (-1,5; 0)
*Vẽ đồ thị hàm số y = (1/3).x + 3 (d3)
Cho x = 0 thì y = 3. Ta có: (0; 3)
Cho y = 0 thì (1/3).x + 3 = 0 ⇔ x = -9. Ta có: (-9; 0)
Đồ thị hàm số đi qua hai điểm (0; 3) và (-9; 0)
b. Phương trình hoành độ giao điểm của (d1) và (d3):
2x – 2 = (1/3).x + 3 ⇔ 2x - (1/3).x = 3 + 2 ⇔ (5/3).x = 5 ⇔ x = 3
Tung độ giao điểm: y = 2.3 – 2 ⇔ y = 6 – 2 = 4
Vậy tọa độ điểm A là A(3; 4)
Phương trình hoành độ giao điểm của (d2) và (d3):
- (4/3).x – 2 = (1/3).x + 3 ⇔ (1/3).x + (4/3).x = -2 – 3 ⇔ (5/3).x = -5 ⇔ x = -3
Tung độ giao điểm: y = (1/3).(-3) + 3 ⇔ y = -1 + 3 = 2
Vậy tọa độ điểm B là B(-3; 2)
c. Ta có: AB2 = (xA – xB)2 + (yA – yB)2 = (3 + 3)2 + (4 – 2)2 = 40
AB = √40 = 2√10 .
-- Mod Toán 9
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK