Cho hình bình hành ABCD có I là giao điểm của AC và BD. E là một điểm bất kì thuộc BC, qua E kẻ đường thẳng song song với AB và cắt BD,AC,AD lại G,H,F . Chọn kết luận sai?

Câu hỏi :

Cho hình bình hành ABCD có I là giao điểm của AC và BD. E là một điểm bất kì thuộc BC, qua E kẻ đường thẳng song song với AB và cắt BD,AC,AD  lại G,H,F . Chọn kết luận sai?

A. ΔBGE∽ΔHGI

B. ΔGHI∽ΔBAI

C. ΔBGE∽ΔDGF

D. ΔAHF∽ΔCHE

* Đáp án

A

* Hướng dẫn giải

Có ABCD là hình bình hành nên: AD//BC,AB//DC

Xét ΔBGE và ΔDGF có:

\(\begin{array}{l} \widehat {BGE} = \widehat {DGF}(dd)\\ \widehat {EBG} = \widehat {FDG}(slt)\\ \Rightarrow {\rm{\Delta }}BGE \sim {\rm{\Delta }}DGF(g - g) \end{array}\)  nên C đúng.

Xét ΔAHF và ΔCHE có:

\(\begin{array}{l} \widehat {AHF} = \widehat {CHE}(dd)\\ \widehat {HAF} = \widehat {HCE}(slt)\\ \Rightarrow {\rm{\Delta }}AHF \sim {\rm{\Delta }}CHE\left( {g - g} \right) \end{array}\) nên D đúng.

Lại có \( GH//AB \Rightarrow \widehat {IHG} = \widehat {IAB}\) (đồng vị)

Xét ΔGHI và ΔBAI có:

\(\begin{array}{l} \widehat I:chung\\ \widehat {IHG} = \widehat {IAB}(cmt)\\ \Rightarrow {\rm{\Delta }}GHI \sim {\rm{\Delta }}BAI\left( {g - g} \right) \end{array}\)

Suy ra B đúng.

Chỉ có A sai.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK