Trang chủ Đề thi & kiểm tra Lớp 12 Toán học Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Quý Đôn

Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Lê Quý Đôn

Câu hỏi 2 :

Họ các nguyên hàm của hàm số \(f\left( x \right) = {\left( {2x + 3} \right)^5}\) là

A. \(F\left( x \right) = 10{\left( {2x + 3} \right)^4} + C.\)

B. \(F\left( x \right) = 5{\left( {2x + 3} \right)^4} + C.\)

C. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{{12}} + C.\) 

D. \(F\left( x \right) = \frac{{{{\left( {2x + 3} \right)}^6}}}{6} + C.\)

Câu hỏi 3 :

Cho số phức \(z = 2 - i\). Trong mặt phẳng tọa độ Oxyz, điểm biểu diễn của số phức \(\overline z \) có tọa độ là

A. \(\left( {2; - 1} \right).\)

B. \(\left( {2;1} \right).\)

C. \(\left( {1;2} \right).\)

D. \(\left( { - 2;1} \right).\)

Câu hỏi 4 :

Số phức z thỏa mãn \(2z - 3\left( {1 + i} \right) = iz + 7 - 3i\) là

A. \(z = \frac{{14}}{5} + \frac{8}{5}i.\)

B. \(z = 4 - 2i.\)

C. \(z = 4 + 2i.\)

D. \(z = \frac{{14}}{5} - \frac{8}{5}i.\)

Câu hỏi 5 :

Cho hai hàm số \(f\left( x \right);g\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị \(y = f\left( x \right),y = g\left( x \right)\) và các đường thẳng \(x = a,x = b\) bằng

A. \(\int\limits_a^b {\left| {f\left( x \right) + g\left( x \right)} \right|dx} \)

B. \(\int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

C. \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} \)

D. \(\left| {\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} } \right|.\)

Câu hỏi 6 :

Tích phân \(\int\limits_1^e {\frac{{\ln x}}{x}dx} \) bằng:

A. \(\frac{{{e^2} + 1}}{2}\)

B. \(\frac{1}{2}\)

C. \( - \frac{1}{2}\)

D. \(\frac{{{e^2} - 1}}{2}\)

Câu hỏi 7 :

Trong không gian Oxyz, phương trình mặt cầu có tâm \(I\left( { - 1;1; - 2} \right)\) và đi qua điểm \(A\left( {2;1;2} \right)\) là

A. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 25.\)

B. \({\left( {x + 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z + 2} \right)^2} = 5.\)

C. \({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)

D. \({\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - 2} \right)^2} = 25.\)

Câu hỏi 9 :

Trong không gian Oxyz, mặt phẳng \(\left( P \right):2x - z + 1 = 0\) có một vecto pháp tuyến là

A. \(\overrightarrow n  = \left( {2; - 1;1} \right)\).

B. \(\overrightarrow n  = \left( {2;0; - 1} \right)\)

C. \(\overrightarrow n  = \left( {2;0;1} \right)\)

D. \(\overrightarrow n  = \left( {2;1; - 1} \right)\)

Câu hỏi 13 :

Trong không gian Oxyz, cho hai điểm \(A\left( {1;3;5} \right)\) và \(B\left( {1; - 1;1} \right)\). Trung điểm của đoạn thẳng AB có tọa độ là

A. \(\left( {2;2;6} \right)\)

B. \(\left( {0; - 4; - 4} \right)\)

C. \(\left( {0; - 2; - 2} \right)\)

D. \(\left( {1;1;3} \right)\)

Câu hỏi 14 :

Hai số phức \(\frac{3}{2} + \frac{{\sqrt 7 }}{2}i\) và \(\frac{3}{2} - \frac{{\sqrt 7 }}{2}i\) là nghiệm của phương trình nào sau đây?

A. \({z^2} - 3z - 4 = 0\)

B. \({z^2} + 3z + 4 = 0\)

C. \({z^2} - 3z + 4 = 0\)

D. \({z^2} + 3z - 4 = 0\)

Câu hỏi 15 :

Họ nguyên hàm của hàm số \(f\left( x \right) = \sin 2x\) là

A. \(F\left( x \right) =  - \frac{1}{2}\cos 2x + C.\)

B. \(F\left( x \right) =  - \cos 2x + C.\)

C. \(F\left( x \right) =  - 2\cos 2x + C.\)

D. \(F\left( x \right) = \frac{1}{2}\cos 2x + C.\)

Câu hỏi 16 :

Trong không gian Oxyz, phương trình tham số của đường thẳng đi qua điểm \(M\left( {2;0; - 1} \right)\) và có vecto chỉ phương \(\overrightarrow a  = \left( {2; - 3;1} \right)\) là

A. \(\left\{ \begin{array}{l}x = 2 + 2t\\y =  - 3t\\z =  - 1 + t\end{array} \right.\)

B. \(\left\{ \begin{array}{l}x = 4 + 2t\\y =  - 6\\z = 2 - t\end{array} \right.\)

C. \(\left\{ \begin{array}{l}x =  - 2 + 2t\\y =  - 3t\\z = 2 - t\end{array} \right.\)

D. \(\left\{ \begin{array}{l}x =  - 2 + 4t\\y =  - 6t\\z = 1 + 2t\end{array} \right.\)

Câu hỏi 20 :

Trong không gian Oxyz, mặt cầu \(\left( S \right):{x^2} + {y^2} + {z^2} - 8x + 2y + 1 = 0\) có tọa độ tâm I và bán kính R lần lượt là

A. \(I\left( { - 4;1;0} \right);\,\,R = 4.\)

B. \(I\left( {8; - 2;0} \right);\,\,R = 2\sqrt 7 .\)

C. \(I\left( {4; - 1;0} \right);\,\,R = 4.\)

D. \(I\left( {4; - 1;0} \right);\,\,R = 16.\)

Câu hỏi 29 :

Cho tứ diện MNPQ có MQ vuông góc với mặt phẳng \(\left( {MNP} \right)\),\(MP = MQ = 3,\) \(MN = 4,\) \(NP = 5\). Khoảng cách từ M đến mặt phẳng \(\left( {NPQ} \right)\) bằng

A. \(\frac{{6\sqrt {41} }}{{41}}\)

B. \(\frac{{4\sqrt {41} }}{{41}}\)

C. \(\frac{{24\sqrt {41} }}{{41}}\)

D. \(\frac{{12\sqrt {41} }}{{41}}\)

Câu hỏi 32 :

Gọi S là diện tích hình phẳng giới hạn bởi các đường \(y =  - {3^x},\) \(y = 0,\) \(x = 0,\) \(x = 4\). Mệnh đề nào sau đây đúng?

A. \(S = \pi \int\limits_0^4 {{3^{2x}}dx} \)

B. \(S = \int\limits_0^4 {\left( { - {3^x}} \right)dx} \)

C. \(S = \int\limits_0^4 {{3^x}dx} \)

D. \(S = \pi \int\limits_0^4 {{3^x}dx} \)

Câu hỏi 42 :

Trong không gian với hệ tọa độ Oxy, tìm trên trục Oz điểm M cách đều điểm A(2;3;4) và mặt phẳng \(\left( P \right):\,\,2x + 3y + z - 17 = 0\).

A. \(M\left( {0;0; - 3} \right)\) 

B. \(M\left( {0;0;3} \right)\)

C. \(M\left( {0;0; - 4} \right)\)

D. \(M\left( {0;0;4} \right)\)

Câu hỏi 43 :

Cho tích phân \(I = \int\limits_0^\pi  {{x^2}\cos xdx} \) và đặt \(u = {x^2},\,\,dv = \cos xdx\). Mệnh đề nào sau đây là mệnh đề
đúng?

A. \(I = \left. {{x^2}\sin x} \right|_0^\pi  - \int\limits_0^\pi  {x.\sin xdx} \)

B. \(I = \left. {{x^2}.\sin x} \right|_0^\pi  + 2\int\limits_0^\pi  {x.\sin xdx} \)

C. \(I = \left. {{x^2}\sin x} \right|_0^\pi  - 2\int\limits_0^\pi  {x.\sin xdx} \)

D. \(I = \left. {{x^2}\sin x} \right|_0^\pi  + \int\limits_0^\pi  {x.\sin xdx} \)

Câu hỏi 44 :

Trong không gian Oxyz, cho hai điểm \(A\left( { - 2; - 1;3} \right)\) và \(B\left( {0;3;1} \right)\). Tọa độ trung điểm của đoạn thẳng AB là:

A. \(\left( {2;4; - 2} \right)\)

B. \(\left( { - 2;2;4} \right)\)

C. \(\left( { - 1;1;2} \right)\)

D. \(\left( { - 2; - 4;2} \right)\)

Câu hỏi 45 :

Cho số phức \(z = 1 - 2i\). Tính \(\left| z \right|\).

A. \(\left| z \right| = 5\) 

B. \(\left| z \right| = \sqrt 5 \)

C. \(\left| z \right| = 3\)

D. \(\left| z \right| = 2\)

Câu hỏi 46 :

Cho hình phẳng (D) được giới hạn bởi các đường \(x = 0\), \(x = 1\), \(y = 0\) và \(y = \sqrt {2x + 1} \). Thể tích V của khối tròn xoay tạo thành khi quay (D) xung quanh trục Ox được tính theo công thức:

A. \(V = \int\limits_0^1 {\left( {2x + 1} \right)dx} \)  

B. \(V = \pi \int\limits_0^1 {\sqrt {2x + 1} dx} \)

C. \(V = \pi \int\limits_0^1 {\left( {2x + 1} \right)dx} \)

D. \(V = \int\limits_0^1 {\sqrt {2x + 1} dx} \)

Câu hỏi 49 :

Cho đường thẳng \({d_1}:\,\,\left\{ \begin{array}{l}x = 4 - 2t\\y = t\\z = 3\end{array} \right.\,\,\left( {t \in \mathbb{R}} \right)\) và \({d_2}:\,\,\left\{ \begin{array}{l}x = 1\\y = t'\\z =  - t'\end{array} \right.\,\,\left( {t' \in \mathbb{R}} \right)\). Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng \(\left( {{d_1}} \right),\,\,\left( {{d_2}} \right)\) là:

A. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{9}{4}\)

B. \({\left( {x + \frac{3}{2}} \right)^2} + {y^2} + {\left( {z + 2} \right)^2} = \frac{3}{2}\)

C. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{3}{2}\)

D. \({\left( {x - \frac{3}{2}} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = \frac{9}{4}\)

Lời giải có ở chi tiết câu hỏi nhé! (click chuột vào câu hỏi).

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK