Chứng minh rằng nếu có một mặt cầu tiếp xúc với \(6\) cạnh của một hình tứ diện thì tổng độ dài của các cặp cạnh đối diện tứ diện bằng nhau.
Giả sử tứ diện \(ABCD\) có mặt cầu tiếp xúc với cả \(6\) cạnh của tứ diện; tiếp xúc với \(AB, BC, CD,AD,AC,BD\) lần lượt tại \(M,N,P,Q,R,S\). Vì các đoạn thẳng kẻ từ một điểm đến tiếp điểm của các tiếp tuyến đó bằng nhau, nên ta có:
\( \left\{\begin{matrix} AM= AR = AQ\\ BM= BN= BS\\ CN= CP= CR\\ DP = DQ = DS\\ \end{matrix}\right.\)
Ta chứng minh: \(AB + CD = AC +BD = AD + BC\).
Ta có
\(AM + MB + CP + PD \)\(=AR+RC+BS+SD\)
\(= AQ + QD + BN + NC\)
Hay: \(AB + CD = AC +BD = AD + BC\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK