Bài 10 trang 49 SGK Hình học lớp 12

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình chóp \(S.ABC\) có bốn đỉnh đếu nằm trên một mặt cầu, \(SA = a, SB = b, SC = c\) và ba cạnh \(SA, SB, SC\) đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo bởi mặt cầu đó.

Hướng dẫn giải

+) Công thức tính diện tích mặt cầu bán kính \(r\) là: \(S=4 \pi r^2.\)

+) Công thức tính thể tích mặt cầu bán kính \(r\) là: \(V=\frac{4}{3} \pi r^3.\)

Lời giải chi tiết

Gọi \(I\) là tâm cầu ngoại tiếp hình chóp tam giác \(S.ABC\). Hạ \(IJ\) vuông góc \((SAB)\), vì \(I\) cách đều \(3\) điểm \(S, A, B\) nên \(J\) cũng cách đều \(3\) điểm \(S, A, B\).

Vì tam giác \(SAB\) vuông đỉnh \(S\) nên \(J\) là trung điểm của \(AB\).

Ta có \(SJ ={1 \over 2}AB = {1 \over 2}\sqrt {{a^2} + {b^2}}\)

Do \(SC\) vuông góc \((SAB)\) nên \(IJ // SC\).

Gọi \(H\) là trung điểm \(SC\), ta có \(SH = IJ = {c \over 2}\).

Do vậy, \(I{S^2} = I{J^2} + S{J^2} = {{({a^2} + {b^2} + {c^2})} \over 4}\) và  bán kính hình cầu ngoại tiếp \(S.ABC\) là 

\(r = IS = {1 \over 2}\sqrt {{a^2} + {b^2} + {c^2}} \)

Diện tích mặt cầu là:

\(S = 4\pi {r^2} = \pi ({a^2} + {b^2} + {c^2})\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK