Từ một điểm \(M\) nằm nằm bên ngoài mặt cầu \(S( O; r)\) ta kẻ hai đường thẳng cắt mặt cầu lần lượt tại \(A, B\) và \(C, D\).
a) Chứng minh rằng \(MA.MB = MC.MD\).
b) Gọi \(MO = d\). Tính \(MA.MB\) theo \(r\) và \(d\).
+) Sử dụng các tam giác đồng dạng để chứng minh các tỉ lệ giữa các cạnh. Từ đó suy ra tích cần chứng minh.
+) Sử dụng định lý Pi-ta-go và tỉ lệ vừa chứng minh ở câu a để tính đại lượng cần tính.
Lời giải chi tiết
a) Gọi \((P)\) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng\((P)\) cắt mặt cầu \(S(O;r)\) theo một đường tròn tâm \(I\), là hình chiếu vuông góc của \(O\) lên mặt phẳng \((P)\).
Xét hai tam giác \(MAD\) và \(MCB\) có:
+) \(\widehat B = \widehat D\) (Hai góc cùng chắn một cung)
+) \(\widehat M\) chung
\( \Rightarrow \Delta MAD\) đồng dạng với \(\Delta MCB.\)
\(\Rightarrow{{MA} \over {MC}} = {{MD} \over {MB}}\) (các cặp cạnh tương ứng tỉ lệ).
\(\Rightarrow MA.MB=MC.MD \, \, \, (dpcm)\)
b) Đặt \(MO = d\), ta có \(OI\) vuông góc với \((P)\) và ta có:
\(O{M^2} = M{I^2} = O{I^2};O{A^2} = O{I^2} + I{A^2}\)
Hạ \(IH\) vuông góc \(AB\), ta có \(H\) là trung điểm của \(AB\).
Ta có \(MA = MH - HA\); \(MB = MH + HB = MH + HA\).
\(MA.MB = M{H^2} - H{A^2}\)
\(\eqalign{
& = (M{H^2} + H{I^2}) - (H{A^2} + I{H^2}) \cr
& = M{I^2} - I{A^2} \cr
& = (M{I^2} + O{I^2}) - (I{A^2} + O{I^2}) \cr
& = O{M^2} - O{A^2} \cr
& = {d^2} - {r^2} \cr} \)
Vậy \(MA.MB = {d^2} - {r^2}\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK