Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 4. Cấp số nhân Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Câu 41 trang 122 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 41. Số hạng thứ hai, số hạng đầu và số hạng thứ ba của một cấp số cộng với công sai khác 0 theo thứ tự đó lập thành một cấp số nhân. Hãy tìm công bội của cấp số nhân đó.

Hướng dẫn giải

Kí hiệu (un) là cấp số cộng đã cho và gọi q là công bội của cấp số nhân u2, u1, u3. Theo đề bài, ta cần tính q.

Vì cấp số cộng (un) có công sai khác 0 nên các số u1, u2, u3 đôi một khác nhau, suy ra q ∉ {0, 1} và u2 ≠ 0.

Từ các giả thiết của đề bài ta có u1 = u2q, u3 = u2q2 và u1 + u3 = 2u2, suy ra

\({u_2}\left( {q + {q^2}} \right) = 2{u_2} \Leftrightarrow {q^2} + q - 2 = 0\,\left( {\text{vì }\,{u_2} \ne 0} \right) \Leftrightarrow q = - 2\,\left( {\text{vì }\,q \ne 1} \right)\)

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK