Tìm cấp số nhân có sáu số hạng, biết rằng tổng của năm số hạng đầu là \(31\) và tổng của năm số hạng sau là \(62\).
Sử dụng công thức số hạng tổng quát của CSN: \({u_n} = {u_1}{q^{n - 1}}\) và công thức tổng n số hạng đầu tiên của CSN: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\).
Lời giải chi tiết
Giả sử có cấp số nhân: \({u_1},{u_2},{u_3},{u_4},{u_5},{u_6}\)
Theo giả thiết ta có:
\({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 31\). (1)
\({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 62\). (2)
Nhân hai vế của (1) với \(q\), ta được: \({u_1}q + {u_2}q + {u_3}q + {u_4}q + {u_5}q = 31q\)
hay \({u_2} + {u_3} + {u_4} + {u_5} + {u_6} = 31q\)
\(\Rightarrow 62 = 31.q \Rightarrow q = 2\).
Ta có \({S_5} = 31 \Leftrightarrow \frac{{{u_1}\left( {1 - {2^5}} \right)}}{{1 - 2}} = 31 \Leftrightarrow 31{u_1} = 31 \Leftrightarrow {u_1} = 1\)
Vậy ta có cấp số nhân là: \(1, 2, 4, 8, 16, 32\).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK