Bài 24. Giả sử một con tàu vũ trụ được phóng lên từ mũi Ca-na-vơ-ran (Canaveral) ở Mĩ. Nó chuyển động theo một quỹ đạo được mô tả trên một bản đồ phẳng (quanh đường xích đạo) của mặt đất
như hình 1.23 : điểm \(M\) mô tả cho con tàu, đường thẳng \(∆\) mô tả cho đường xích đạo.
Khoảng cách \(h\) (kilomet) từ \(M\) đến \(∆\) được
tính theo công thức \(h = |d|\), trong đó
\(d = 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right],\)
Với \(t\) (phút) là thời gian trôi qua kể từ khi con tàu đi vào quỹ đạo, \(d > 0\) nếu \(M\) ở phía trên \(∆\), \(d < 0\) nếu \(M\) ở phía dưới \(∆\).
a. Giả thiết rằng con tàu đi vào quỹ đạo ngay từ khi phóng lên tại mũi Ca-na-vơ-ran (tức là ứng với \(t = 0\)). Hãy tính khoảng cách từ điểm \(C\) đến đường thẳng \(∆\), trong đó \(C\) là điểm trên bản đồ biểu diễn cho mũi Ca-na-vơ-ran.
b. Tìm thời điểm sớm nhất sau khi con tàu đi vào quỹ đạo để có \(d = 2000\).
c. Tìm thời điểm sớm nhất sau khi con tàu đi vào quỹ đạo để có \(d = -1236\).
(Tính chính xác các kết quả đến hàng phần nghìn).
a. Vì \(t = 0\) nên \(d = 4000\cos \left( { - {{10\pi } \over {45}}} \right) = 4000\cos {{2\pi } \over 9}.\) Do đó :
\(h = |d| ≈ 3064,178 (km)\)
b.
\(\eqalign{& d = 2000 \Leftrightarrow 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = 2000\Leftrightarrow \cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = {1 \over 2} \cr & \Leftrightarrow {\pi \over {45}}\left( {t - 10} \right) = \pm {\pi \over 3} + k2\pi \Leftrightarrow t = 10 \pm 15 + 90k \Leftrightarrow \left[ {\matrix{{t = 25 + 90k} \cr {t = - 5 + 90k} \cr} } \right. \cr} \)
Chú ý rằng \(t > 0\) ta thấy ngay giá trị nhỏ nhất của \(t\) là \(t = 25\). Vậy \(d = 2000 (km)\) xảy ra lần đầu tiên sau khi phóng con tàu vào quỹ đạo được \(25\) phút.
c.
\(\eqalign{
& d = - 1236 \Leftrightarrow 4000\cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = - 1236 \Leftrightarrow \cos \left[ {{\pi \over {45}}\left( {t - 10} \right)} \right] = - 0,309 \cr
& \Leftrightarrow {\pi \over {45}}\left( {t - 10} \right) = \pm \alpha + k2\pi \,\left( {\text{ với }\,k \in \mathbb Z\,\text{ và }\,\cos \alpha = - 0,309} \right) \cr
& \Leftrightarrow t = \pm {{45} \over \pi }\alpha + 10 + 90k \cr} \)
Sử dụng bảng số hoặc máy tính bỏ túi, ta có thể chọn \(α ≈ 1,885\). Khi đó ta có :
\(t ≈ ± 27,000 + 10 + 90k\), tức là \(t ≈ - 17,000 + 90k\) hoặc \(t ≈ 37,000 + 90k\)
Dễ thấy giá trị dương nhỏ nhất của \(t\) là \(37,000\). Vậy \(d = -1236 (km)\) xảy ra lần đầu tiên là \(37,000\) phút sau khi con tàu được phóng vào quỹ đạo.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK