Bài 16. Tìm nghiệm của các phương trình sau trong khoảng đã cho
a. \(\sin 2x = - {1 \over 2}\,\text{ với }\,0 < x < \pi \)
b. \(\cos \left( {x - 5} \right) = {{\sqrt 3 } \over 2}\,\text{ với }\, - \pi < x < \pi \)
a. Ta có: \(\sin 2x = - {1 \over 2} \Leftrightarrow \sin 2x = \sin \left( { - {\pi \over 6}} \right)\)
\( \Leftrightarrow \left[ {\matrix{{2x = - {\pi \over 6} + k2\pi } \cr {2x = {{7\pi } \over 6} + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - {\pi \over {12}} + k\pi } \cr {x = {{7\pi } \over {12}} + k\pi } \cr} } \right.\,\,\left( {k \in \mathbb Z} \right)\)
Với điều kiện \(0 < x < π\) ta có :
* \(0 < - {\pi \over {12}} + k\pi < \pi \Leftrightarrow {1 \over {12}} < k < {{13} \over {12}}\,,\,k \in\mathbb Z\)
Nên\( k = 1\), khi đó ta có nghiệm \(x = {{11\pi } \over {12}}\)
* \(0 < {{7\pi } \over {12}} + k\pi < \pi \Leftrightarrow - {7 \over {12}} < k < {5 \over {12}}\,,\,k \in\mathbb Z\)
Nên \(k = 0\), khi đó ta có nghiệm \(x = {{7\pi } \over {12}}\)
Vậy phương trình đã cho có hai nghiệm trong khoảng \((0 ; π)\) là :
\(x = {{7\pi } \over {12}}\,\text{ và }\,x = {{11\pi } \over {12}}\)
b. \(\cos \left( {x - 5} \right) = {{\sqrt 3 } \over 2} \Leftrightarrow \left[ {\matrix{{x - 5 = {\pi \over 6} + k2\pi } \cr {x - 6 = - {\pi \over 6} + 5 + k2\pi } \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = {\pi \over 6} + 5 + k2\pi } \cr {x = - {\pi \over 6} + 5 + k2\pi } \cr} } \right.\)
Ta tìm \(k\) để điều kiện \(–π < x < π\) được thỏa mãn.
Xét họ nghiệm thứ nhất :
\(\eqalign{
& - \pi < {\pi \over 6} + 5 + k2\pi \Leftrightarrow - 7\pi - 30 < 12k\pi < 5\pi - 30 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Leftrightarrow - {7 \over {12}} - {{30} \over {12\pi }} < k < {5 \over {12}} - {{30} \over {12\pi }} \cr
& Vi\, - 1,38 < - {7 \over {12}} - {{30} \over {12\pi }} < k < {5 \over {12}} - {{30} \over {12\pi }} < - 0,37\,,\,k \in\mathbb Z\,\text{ nên }\, \cr
& \,\,\,\,\, - 1,38 < k < - 0,37 \cr} \)
Chỉ có một giá trị \(k\) nguyên thỏa mãn các điều kiện đó là \(k = -1\).
Ta có nghiệm thứ nhất của phương trình là \(x = {\pi \over 6} + 5 - 2\pi = 5 - {{11\pi } \over 6}\)
Tương tự, xét họ nghiệm thứ hai :
\( - \pi < - {\pi \over 6} + 5 + k2\pi < \pi \Leftrightarrow - 5\pi - 30 < 12k\pi < 7\pi - 30.\) Vậy \(k = -1\)
Ta có nghiệm thứ hai của phương trình là \(x = - {\pi \over 6} + 5 - 2\pi = 5 - {{13\pi } \over 6}\)
Vậy : \(x = 5 - {{11\pi } \over 6}\,\text{ và }\,x = 5 - {{13\pi } \over 6}\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK