Cho hình bình hành \(ABCD.\) Đường tròn đi qua ba đỉnh \(A, \, B, \, C\) cắt đường thẳng \(CD\) tại \(P\) khác \(C.\) Chứng minh \(AP = AD.\)
+) Số đo tổng hai góc đối diện của tứ giác nội tiếp bằng \(180^0.\)
Lời giải chi tiết
Do tứ giác \(ABCP\) nội tiếp nên ta có:
\(\widehat{BAP} + \widehat{BCP} = 180^0.\) (1)
Ta lại có: \(\widehat{ABC}+ \widehat{BCP}= 180^0\) (hai góc trong cùng phía do \(CD//AB\)). (2)
Từ (1) và (2) suy ra: \(\widehat{BAP}= \widehat{ABC}.\)
Vậy \(ABCP\) là hình thang cân, suy ra \(AP = BC.\) (3)
Mà \(BC = AD\) (hai cạnh đối đỉnh của hình bình hành) (4)
Từ (3) và (4) suy ra \(AP = AD.\) (đpcm).
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK