Bài 59 trang 90 SGK Toán 9 tập 2

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Cho hình bình hành \(ABCD.\) Đường tròn đi qua ba đỉnh \(A, \, B, \, C\) cắt đường thẳng \(CD\) tại \(P\) khác \(C.\) Chứng minh \(AP = AD.\)

Hướng dẫn giải

+) Số đo tổng hai góc đối diện của tứ giác nội tiếp bằng \(180^0.\)

Lời giải chi tiết

                             

Do tứ giác \(ABCP\) nội tiếp nên ta có:

             \(\widehat{BAP} + \widehat{BCP} = 180^0.\)        (1)

Ta lại có: \(\widehat{ABC}+ \widehat{BCP}=  180^0\) (hai góc trong cùng phía do \(CD//AB\)).      (2)

Từ (1) và (2) suy ra: \(\widehat{BAP}= \widehat{ABC}.\)

Vậy \(ABCP\) là hình thang cân, suy ra \(AP = BC.\)      (3)

Mà \(BC = AD\) (hai cạnh đối đỉnh của hình bình hành)  (4)

Từ (3) và (4) suy ra \(AP = AD.\) (đpcm).

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK