Xem hình 47. Hãy tìm số đo các góc của tứ giác \(ABCD.\)
+) Áp dụng công thức góc ngoài của tam giác.
+) Tổng số đo hai góc đối diện của tứ giác nội tiếp bằng \(180^0.\)
Lời giải chi tiết
Ta có \(\widehat{BCE} = \widehat{DCF}\) (hai góc đối đỉnh)
Đặt \(x = \widehat{BCE} = \widehat{DCF}\). Theo tính chất góc ngoài tam giác, ta có:
\(\widehat{ABC}= x+40^0\) (góc ngoài của \(\Delta BCE\).) (1)
\(\widehat{ADC}=x +20^0\) (góc ngoài của \(\Delta DCF\).) (2)
Lại có \(\widehat{ABC} +\widehat{ADC}=180^0.\) (hai góc đối diện tứ giác nội tiếp). (3)
Từ (1), (2), (3) suy ra: \(180^0 =2x + 60^0 \Rightarrow x = 60^0.\)
Hay \( \widehat{BCE} = \widehat{DCF}=60^0. \)
Từ (1), ta có: \(\widehat{ABC}=60^0 +40^0 =100^0.\)
Từ (2), ta có: \(\widehat{ADC} = 60^0+20^0 = 80^0.\)
\(\widehat{BCD}= 180^0 – x\) (hai góc kề bù)
\(\Rightarrow\widehat{BCD} = 120^0\)
\(\widehat{BAD} = 180^0 - \widehat{BCD}\) (hai góc đối diện của tứ giác nội tiếp)
\(\Rightarrow \widehat{BAD}= 180^0– 120^0= 60^0.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK