Trang chủ Lớp 7 Toán Lớp 7 SGK Cũ Ôn tập chương II: Tam giác Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 2 - Hình học 7

Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 2 - Hình học 7

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 1: Cho tam giác ABC vuông tại B có góc \(\widehat {{B_1}} = \widehat {{B_2}}\) \(\widehat A = {60^o}\), kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc \(\widehat {ABH}\).

b) Chứng minh d vuông góc với BH.

c) Hãy so sánh góc \(\widehat {ABH}\) và \(\widehat {CBx}\) (theo hình vẽ).

Bài 2:  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh \(\Delta AMN\) là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  \(\Delta OBC\) cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Hướng dẫn giải

Bài 1:

a) Ta có \(BH \bot AC\) (giả thiết) nên \(\Delta BHA\) vuông tại H có \(\widehat A = {60^o}\) (giả thiết)

\( \Rightarrow \widehat {ABH} = {90^o} - {60^o} = {30^o}\).

b) \(\left\{ \matrix{  d//AC\, (gt) \hfill \cr  BH \bot AC\,(gt) \hfill \cr}  \right. \Rightarrow d \bot BH.\)

c) Ta có \(\widehat {ABH} + \widehat {HBC} = \widehat {ABC} = {90^o}\)(giả thiết)   (1)

lại có \(d \bot BH\) (chứng minh trên) \( \Rightarrow \widehat {CBx} + \widehat {HBC} = {90^o}\) (2)

Từ (1) và (2) \( \Rightarrow \widehat {CBx} = \widehat {ABH} = {30^o}\).

Bài 2: 

 

a) Ta có  \(\widehat {ABM} + \widehat {ABC} = {180^o}\) (kề bù).

\( \Rightarrow \widehat {ABM} = \widehat {ACN}\).Tương tự \(\widehat {ACN} + \widehat {ACB} = {180^o}\) mà \(\widehat {ABC} = \widehat {ACB}\) (giả thiết).

Xét \(\Delta ABM\) và \(\Delta ACN\) có: AB = AC (giả thiết)

\(\widehat {ABM} = \widehat {ACN}\) (chứng minh trên), BM = CN (giả thiết)

Do đó \(\Delta ABM = \Delta ACN\)(c.g.c) \( \Rightarrow AM = AN\) (cạnh tương ứng)

Vậy \(\Delta AMN\) cân tại A.

b) Ta có \(\Delta BHM\) và \(\Delta CKN\) vuông (giả thiết) có \(\widehat {AMN} = \widehat {ANM}\) (chứng minh trên) và BM = CN (giả thiết).

Do đó \(\Delta BHM = \Delta CKN\)(g.c.g) \( \Rightarrow BH = CK\) (cạnh tương ứng).

c) Ta có \(\Delta BHM = \Delta CKN\) (chứng minh trên)

\( \Rightarrow \widehat {{B_1}} = \widehat {{C_1}}\) (góc tương ứng) mà \(\widehat {{B_1}} = \widehat {{B_2}}\)(đối đỉnh).

Tương tự \( \Rightarrow AO\) \(\widehat {{C_1}} = \widehat {{C_2}}\) \( \Rightarrow \widehat {{B_2}} = \widehat {{C_2}}\). Chứng tỏ \(\Delta OBC\) cân.

d) D là trung điểm của BC (giả thiết) \( \Rightarrow DB = DC\). Do đó \(\Delta ADB = \Delta ADC\) (c.c.c) \( \Rightarrow \widehat {DAB} = \widehat {DAC}\) hay AD là tia phân giác của góc \(\widehat {BAC}\).

Chứng minh tương tự ta có \(\Delta ABO = \Delta CAO\)(c.c.c) \( \Rightarrow AO\) là phân giác của góc \(\widehat {BAC}\).

Vậy ba điểm A, D, O thẳng hàng.

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK