Cho tam giác ABC, các tia phân giác của các góc B và C cắt nhau ở I.
a) Biết \(\widehat A = {70^o}\). Tính số đo góc \(\widehat {BIC}.\)
b) Vẽ \(ID \bot AB\) (D thuộc AB), \(IE \bot BC\) (E thuộc BC), \(IF \bot AC\) (F thuộc AC). Chứng minh rằng: \(ID = IE = IF.\)
a) Ta có \(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat B + \widehat C = {180^o} - \widehat A\)
\( = {180^o} - {70^o} = {110^o}.\)
Do đó \(\dfrac{{\widehat B}}{2} + \dfrac{{\widehat C}}{ 2} = \dfrac{{{{110}^o}} }{ 2} = {55^o}\) hay \(\widehat {{B_2}} + \widehat {{C_2}} = {55^o}.\)
Xét \(\Delta BIC\) ta có \(\widehat {BIC} = {180^o} - \left( {\widehat {{B_2}} + \widehat {{C_2}}} \right) \)\(\,= {180^o} - {55^o} = {125^o}.\)
b) ID, IE lần lượt vuông góc với AB, BC (giả thiết) nên có tam giác BDI, BEI vuông.
Xét hai tam giác vuông BDI và BEI có
+) \(\widehat {{B_1}} = \widehat {{B_2}}\) (giả thiết).
+) BI cạnh chung
\( \Rightarrow \Delta BDI = \Delta BEI \Rightarrow ID = IE\,\,(1)\)
Chứng minh tương tự ta có cặp tam giác sau đây bằng nhau
\(\Delta CEI = \Delta CFI \Rightarrow IE = IF\,\,(2)\)
Từ (1) và (2) \( \Rightarrow ID = IE = IF.\)
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK