Cho một đa giác đều có 15 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của . Tính số tứ giác được lập thành mà không có cạnh nào là cạnh của .

Câu hỏi :

Cho một đa giác đều (H) có 15 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của . Tính số tứ giác được lập thành mà không có cạnh nào là cạnh của (H)  .

A. 4950.

B. 1800.

C. 30.

D. 450.

* Đáp án

D

* Hướng dẫn giải

Đáp án D.

Gọi các đỉnh của đa giác là , ,..., .

Để chọn được một tứ giác thoả mãn ta thực hiện qua các công đoạn:

Chọn một đỉnh có 15 cách, giả sử là 4.

Ta tìm số cách chọn ba đỉnh còn lại, tức ba đỉnh , ,  và giữa ,    đỉnh; giữa ,    đỉnh; giữa ,     đỉnh và giữa ,    đỉnh, theo giả thiết có

 x1+x2+x3+x4=154=11xm1,m=1,4¯

Số cách chọn ra ba đỉnh này bằng số nghiệm tự nhiên của phương trình x1+x2+x3+x4=11

 và bằng C11141=C103 .

Vậy số các tứ giác có thể bằng , tuy nhiên vì vai trò bốn đỉnh như nhau nên mỗi đa giác được tính 4 lần, do đó số tứ giác bằng 15C1034=450 .

Tổng quát: Đa giác có n đỉnh, số tứ giác lập thành từ 4 đỉnh không có cạnh của đa giác là: n4.Cn53 .

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự

Lớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK