Hình học 11 Bài 3: Phép đối xứng trục

Lý thuyết Bài tập

Tóm tắt bài

1.1. Định nghĩa

Cho đường thẳng d. Phép biến mỗi điểm M thuộc d thành chính nó. Biến mỗi điểm M không thuộc d thành điểm M’ sao cho d là đường trung trực của MM’, được gọi là phép đối xứng qua đường thẳng d (hay là phép đối xứng trục) . Đường thẳng d gọi là trục đối xứng.

Phép đối xứng trục d thường được kí hiệu là Đd.

 

Nhận xét:

  • Đd(M)=M' ⇒ Đd(M')=M.
  • \(M \in d\) ⇒ Đd(M)=M.

1.2. Biểu thức tọa độ của phép đối xứng trục

a) Chọn hệ trục tọa độ Oxy sao cho đường thẳng d trùng với trục Ox

Với mỗi điểm M(x;y), gọi M’(x’;y’) là ảnh của M qua phép đối xứng trục d hay M’=Đd(M)=(x’;y’) thì: 

\(\left\{ \begin{array}{l}
x' =  x\\
y' = - y
\end{array} \right.\)

b) Chọn hệ trục tọa độ Oxy sao cho đường thẳng d trùng với trục Oy

Với mỗi điểm M(x;y), gọi M’(x’;y’) là ảnh của M qua phép đối xứng trục d hay M’=Đd(M)=(x’;y’) thì: 

\(\left\{ \begin{array}{l}
x' =  - x\\
y' = y
\end{array} \right.\)

1.3. Tính chất

a) Tính chất 1

Phép đối xứng trục bảo toàn khoảng cách giữa hai điểm bất kỳ.

b) Tính chất 2:

Phép đối xứng trục biến một đường thẳng thành một đường thẳng, biến một đoạn thẳng thành một đoạn thẳng bằng nó, biến một tam giác thành một tam giác bằng nó , biến một đường tròn thành một đường tròn có cùng bán kính.

1.4. Trục đối xứng của một hình

Định nghĩa:

Đường thẳng d gọi là trục đối xứng của hình H nếu phép dối xứng qua d biến hình H thành chính nó, tức là Đd(H)=H.

Ví dụ 1:

Cho điểm M(1;3). Tìm tọa đô M’ là ảnh của M qua phép đối xứng trục Oy, rồi tìm tọa độ của M’’ là ảnh của M’ qua phép đối xứng trục Ox.

Hướng dẫn giải:

ĐOy(M)=M’\( \Rightarrow \left\{ \begin{array}{l}x' =  - x =  - 1\\y' = y = 3\end{array} \right. \Rightarrow M'( - 1;3).\)

ĐOx(M’)=M’’\( \Rightarrow \left\{ \begin{array}{l}x'' = x' =  - 1\\y'' =  - y' =  - 3\end{array} \right. \Rightarrow M'( - 1; - 3).\)

 

Ví dụ 2:

Cho đường tròn (C): \({(x - 1)^2} + {(y - 2)^2} = 4.\) Viết phương trình đường tròn (C’) là ảnh ủa đường tròn (C) qua phép đối xứng trục Ox.

Hướng dẫn giải:

Gọi I và R lần lượt là tâm và bán kính của đường tròn (C), I’ và R’ lần lượt là tâm và bán kính của đường tròn (C’).

Khi đó ta có: \(R' = R = 2\) và I’=ĐOx(I).

I’=ĐOx(I)\( \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = {x_I} = 1\\{y_{I'}} =  - {y_I} =  - 2\end{array} \right.\)

Vậy phương trình đường tròn (C’) là: \({(x - 1)^2} + {(y + 2)^2} = 4.\)

 

Ví dụ 3:

Cho \(d:\frac{{x - 1}}{2} = \frac{{y + 2}}{3}.\) Viết phương trình đường thẳng d’ là ảnh của d qua phép đối xứng trục Oy.

Hướng dẫn giải:

Gọi \(M(x,y) \in d,\) khi đó ĐOy(M)=M’\( \Rightarrow \left\{ \begin{array}{l}x' =  - x\\y' = y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - x'\\y = y'\end{array} \right. \Rightarrow M( - x';y').\)

\(M \in d \Rightarrow \frac{{ - x' - 1}}{2} = \frac{{y' + 2}}{3} \Leftrightarrow 3x' + 2y' + 7 = 0\)

Vậy phương trình của d’ là: \(3x + 2y + 7 = 0.\)

3. Luyện tập Bài 3 chương 1 hình học 11

Nội dung bài học sẽ giới thiệu đến các em khái niệm, tính chất, biểu thức tọa độ và các dạng toán liên quan đến Phép đối xứng trục. Thông qua các ví dụ minh học có hướng dẫn giải chi tiết các em sẽ dễ dàng nắm được phương pháp giải bài tập ở dạng toán này

3.1 Trắc nghiệm về phép đối xứng trục

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Chương 1 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK và Nâng Cao về phép đối xứng trục

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Chương 1 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.

Bài tập 2 trang 11 SGK Hình học 11

Bài tập 3 trang 11 SGK Hình học 11

Bài tập 1.6 trang 16 SBT Hình học 11

Bài tập 1.7 trang 16 SBT Hình học 11

Bài tập 1.8 trang 16 SBT Hình học 11

Bài tập 1.9 trang 16 SBT Hình học 11

Bài tập 1.10 trang 16 SBT Hình học 11

Bài tập 7 trang 13 SGK Hình học 11 NC

Bài tập 8 trang 13 SGK Hình học 11 NC

Bài tập 9 trang 13 SGK Hình học 11 NC

Bài tập 10 trang 13 SGK Hình học 11 NC

Bài tập 11 trang 14 SGK Hình học 11 NC

4. Hỏi đáp về bài 3 chương 1 hình học 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK