Hình học 11 Bài 2: Phép tịnh tiến

Lý thuyết Bài tập

Tóm tắt bài

1.1. Định nghĩa

Trong mặt phẳng, cho vectơ \(\overrightarrow v  = \left( {a;b} \right)\) . Phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {a;b} \right)\) là phép biến hình, biến một điểm M thành một điểm M’ sao cho \(\overrightarrow {MM'}  = \overrightarrow v .\)

Ký hiệu: \({T_{\overrightarrow v }}(M) = M'\) hoặc \({T_{\overrightarrow v }}:M \to M'\).\(\)\(\)\(\)

1.2.Các tính chất của phép tịnh tiến

a) Tính chất 1

Định lý 1: Nếu phép tịnh tiến biến hai điểm M, N thành hai điểm M’, N’ thì MN=M’N’.

b) Tính chất 2

Định lý 2: Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng và không làm thay đổi thứ tự của ba điểm đó.

Hệ quả:

Phép tịnh tiến biến đường thẳng thành đường thẳng, biến một tia thành một tia, biến một đoạn thẳng thành một đoạn thẳng bằng nó, biến một tam giác thành một tam giác bằng nó, biến một đường tròn thành một đường tròn có cùng bán kính , biến một góc thành một góc bằng nó .

1.3. Biểu thức tọa độ của phép tịnh tiến

Giả sử cho \(\overrightarrow v  = \left( {a;b} \right)\) và một điểm M(x;y).

Phép tịnh tiến theo vectơ \(\overrightarrow v \)  biến điểm M thành điểm M’ thì M’ có tọa độ là: \(\left\{ \begin{array}{l}x' = a + x\\y' = y + b\end{array} \right.\)

1.4. Một số dạng bài tập và phương pháp giải

a) Dạng 1

Cho điểm \(A\left( {x;y} \right)\) tìm ảnh \(A'\left( {x';y'} \right)\) là ảnh của \(A\) qua phép \({T_{\overrightarrow v }}\) với \(\overrightarrow v  = \left( {{x_0};{y_0}} \right)\)

Phương pháp giải:

Ta có: \({\rm{A'  =  }}{{\rm{T}}_{\overrightarrow v }}(A) \Leftrightarrow \overrightarrow {AA'}  = \overrightarrow v  \Leftrightarrow (x' - x;y' - y) = ({x_0};{y_0}) \Leftrightarrow \left\{ \begin{array}{l}x' - x = {x_0}\\y' - y = {y_0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = x + {x_0}\\y' = y + {y_0}\end{array} \right.\)  

Vậy: \(A'\left( {x + {x_0};y + {y_0}} \right)\).

b) Dạng 2

Cho đường thẳng\(d:ax + by + c = 0\) tìm ảnh của d qua phép \({T_{\overrightarrow v }}\) với \(\overrightarrow v  = \left( {{x_0};{y_0}} \right)\)

Phương pháp giải:

Gọi \(d'\) là ảnh của d qua phép \({T_{\overrightarrow v }}\) với \(\overrightarrow v  = \left( {{x_0};{y_0}} \right)\)

  • Phương pháp giải 1:

Với \(M = \left( {x;y} \right) \in d\) ta có \({T_{\overrightarrow v }}\left( M \right) = M'\left( {x';y'} \right) \in d'\).

Áp dụng biểu thức tọa độ của phép \({T_{\overrightarrow v }}\): \(\left\{ \begin{array}{l}x' = x + {x_0}\\y' = y + {y_0}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = x' - {x_0}\\y = y' - {y_0}\end{array} \right.\)

Khi đó ta có \(d':a\left( {x' - {x_0}} \right) + b\left( {y' - {y_0}} \right) + c = 0 \Leftrightarrow ax' + by' - a{x_0} - b{y_0} + c = 0\)

Vậy phương trình của d’ là : \(ax + by - a{x_0} - b{y_0} + c = 0\)

  • Phương pháp giải 2:

Ta có d và d’ song song hoặc trùng nhau, vậy d’ có một vec tơ pháp tuyến là \(\overrightarrow n  = \left( {a;b} \right)\).

Ta tìm 1 điểm thuộc d’.

Ta có \(M\left( {0; - \frac{c}{b}} \right) \in d\), ảnh \(M'\left( {x';y'} \right) \in d'\), ta có : \(\left\{ \begin{array}{l}x' = 0 + {x_0} = {x_0}\\y' =  - \frac{c}{b} + {y_0}\end{array} \right.\)

Phương trình của d’ là : \(a\left( {x - {x_0}} \right) + b\left( {y + \frac{c}{b} - {y_0}} \right) = 0 \Leftrightarrow ax + by - a{x_0} - b{y_0} + c = 0\)

Ví dụ 1:

Trong mặt phẳng Oxy, tìm ảnh A’, B’ của điểm A(2;3), B(1;1) qua phép tịnh tiến theo vectơ \({\rm{\vec u  =  (3;1)}}.\) Tính độ dài các vectơ \(\overrightarrow {{\rm{AB}}} {\rm{ }},{\rm{ }}\overrightarrow {{\rm{A'B'}}} {\rm{ }}.\)

Hướng dẫn giải:

Ta có: \({\rm{A' =  }}{{\rm{T}}_{{\rm{\vec u}}}}(A) = (5;4){\rm{ }}{\rm{, B' =  }}{{\rm{T}}_{{\rm{\vec u}}}}(B) = (4;2){\rm{ }} \Rightarrow {\rm{AB  = }}\left| {\overrightarrow {{\rm{AB}}} } \right|\, = \sqrt 5 ,{\rm{ A'B'  = }} \Rightarrow \left| {\overrightarrow {{\rm{A'B'}}} } \right|\, = \sqrt 5 {\rm{ }}{\rm{.}}\)

 

Ví dụ 2:

Đường thẳng d cắt Ox tại A(-4;0), cắt Oy tại B(0;5). Viết phương trình tham số của d’ là ảnh của d qua phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( {5;1} \right).\)

Hướng dẫn giải:

Đường thẳng d có một VTCP là: \(\overrightarrow {{u_d}}  = \overrightarrow {AB}  = (4;5)\)

Vì \({T_{\overrightarrow v }}(d) = d' \Rightarrow \overrightarrow {{u_d}'}  = \overrightarrow {{u_d}}  = (4;5)\)

Gọi \({T_{\overrightarrow v }}(A) = A' \Rightarrow \left\{ \begin{array}{l}{x_{A'}} = {x_A} + 5 = 1\\{y_{A'}} = {y_A} + 1 = 1\end{array} \right. \Rightarrow A'(1;1)\)

Vì \(A \in d \Rightarrow A' \in d' \Rightarrow d':\left\{ \begin{array}{l}x = 1 + 4t\\y = 1 + 5t\end{array} \right.\,\,(t \in \mathbb{R})\)

 

Ví dụ 3:

Tìm phương trình đường thẳng d’ là ảnh của đường thẳng d: \(x - 2y + 3 = 0\) qua phép tịnh tiến theo vectơ \(\overrightarrow v  = ( - 1;2).\)

Hướng dẫn giải:

Cách 1:

 Gọi \(M(x;y) \in d,{T_{\overrightarrow v }}(M) = M'(x';y') \in d'\)

\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}x' = x - 1\\y' = y + 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = x' + 1\\y = y' - 2\end{array} \right. \Rightarrow M(x' + 1;y' - 2) \in d\\ \Rightarrow x' - 2y' + 8 = 0.\end{array}\)

Vậy phương trình d’ là: \(x - 2y + 8 = 0.\)

Cách 2:

({T_{\overrightarrow v }}(d) = d' \Rightarrow d'//d \Rightarrow d':x - 2y + c = 0\)

Chọn \(M( - 3;0) \in d \Rightarrow {T_{\overrightarrow v }}(M) = M'(x';y') \Rightarrow \left\{ \begin{array}{l}x' =  - 3 - 1 =  - 4\\y' = 0 + 2 = 0\end{array} \right. \Rightarrow M'( - 4;2).\)

Mà \(M' \in d' \Rightarrow  - 4 - 2.2 + c = 0 \Leftrightarrow c = 8 \Rightarrow d':x - 2y + 8 = 0.\)

 

Ví dụ 4:

Cho đường tròn \((C):{(x - 2)^2} + {(y - 1)^2} = 4.\) Tìm ảnh của (C) qua phép tịnh tiến theo vectơ \(\overrightarrow v  = \left( { - 2;2} \right).\)

Hướng dẫn giải:

Cách 1:

Đường tròn (C) có tâm I(2;1) bán kính R=2.

Ta có: \({T_{\overrightarrow v }}(C) = C' \Rightarrow {R_{C'}} = R = 2\)

\({T_{\overrightarrow v }}(I) = I' \Rightarrow \left\{ \begin{array}{l}{x_{I'}} = {x_I} + ( - 2) = 0\\{y_{I'}} = {y_I} + 2 = 3\end{array} \right. \Rightarrow I'(0;3)\)

Vậy phương trình (C’) là: \({(x - 0)^2} + {(y - 3)^2} = 4.\)

Cách 2:

Gọi: \({T_{\overrightarrow v }}\left( {M(x,y) \in (C)} \right) = M'(x';y') \in (C') \Rightarrow \left\{ \begin{array}{l}x' = x - 1\\y' = y + 2\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = x' + 2\\y = y' - 2\end{array} \right.\)

\( \Rightarrow M(x' + 2;y' - 2)\)

\(M \in \left( C \right) \Rightarrow x{'^2} + {(y' - 3)^2} = 4 \Rightarrow (C'):{x^2} + {(y - 3)^2} = 4.\)

 

Ví dụ 5:

Cho \(\,d:\,2x - 3y + 3 = 0;\,{d_1}:2x - 3y - 5 = 0.\)

Tìm tọa độ \(\overrightarrow {\rm{w}} \)có phương vuông góc với d để \({d_1} = {T_{\overrightarrow {\rm{W}} }}(d).\)

Hướng dẫn giải:

Vì \(\overrightarrow {\rm{w}} \) có phương vuông góc với d nên: \(\overrightarrow {\rm{w}}  = k.\overrightarrow {{n_d}}  = \left( {2k; - 3k} \right)\)

Chọn \(M(0;1) \in d \Rightarrow {T_{\overrightarrow {\rm{w}} }}(M) = M' \in {d_1} \Rightarrow \left\{ \begin{array}{l}{x_{M'}} = {x_M} + {x_{\overrightarrow {\rm{w}} }} = 2k\\{y_{M'}} = {y_M} + {y_{\overrightarrow {\rm{w}} }} =  - 3k + 1\end{array} \right.\)

\( \Rightarrow M'(2k; - 3k + 1).\)

\(M' \in {d_1} \Rightarrow 2.(2k) - 3.( - 3k + 1) - 5 = 0 \Leftrightarrow k = \frac{8}{{13}} \Rightarrow \overrightarrow {\rm{w}}  = \left( {\frac{{16}}{{13}}; - \frac{{24}}{{13}}} \right).\)

3. Luyện tập Bài 2 chương 1 hình học 11

Nội dung bài học sẽ giới thiệu đến các em khái niệmtính chấtbiểu thức tọa độ và các dạng toán của Phép tịnh tiến. Thông qua các ví dụ minh họa các em sẽ nắm được các phương pháp giải bài tập. Để học tốt hơn, các em cần ôn lại khái niệm vectơ đã học ở Hình học 10.

3.1 Trắc nghiệm về phép tịnh tiến

Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Chương 1 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 6- Câu 15: Xem thêm phần trắc nghiệm để làm thử Online 

3.2 Bài tập SGK và Nâng Cao về phép tịnh tiến

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Chương 1 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Hình học 11 Cơ bản và Nâng cao.

Bài tập 4 trang 7 SGK Hình học 11

Bài tập 1.1 trang 10 SBT Hình học 11

Bài tập 1.2 trang 10 SBT Hình học 11

Bài tập 1.3 trang 10 SBT Hình học 11

Bài tập 1.4 trang 10 SBT Hình học 11

Bài tập 1.5 trang 10 SBT Hình học 11

Bài tập 1 trang 9 SGK Hình học 11 NC

Bài tập 2 trang 9 SGK Hình học 11 NC

Bài tập 3 trang 9 SGK Hình học 11 NC

Bài tập 4 trang 9 SGK Hình học 11 NC

Bài tập 5 trang 9 SGK Hình học 11 NC

Bài tập 6 trang 9 SGK Hình học 11 NC

4. Hỏi đáp về bài 2 chương 1 hình học 11

Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em. 

Bạn có biết?

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!

Nguồn : ADMIN :))

Liên hệ hợp tác hoặc quảng cáo: gmail

Điều khoản dịch vụ

Copyright © 2021 HOCTAPSGK