Trong mặt phẳng (Oxy) cho \(\overrightarrow u = \left( {1; - 2} \right)\)
a) Viết phương trình ảnh của mỗi đường trong trường hợp sau:
+) Đường thẳng a có phương trình: 3x-5y+1=0 ?
+) Đường thẳng b có phương trình: 2x+y+100=0
b) Viết phương trình đường tròn ảnh của đường tròn (C ): \({x^2} + {y^2} - 4{\rm{x}} + y - 1 = 0\)
c) Viết phương trình đường (E) ảnh của (E): \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\)
d) Viết phương trình ảnh của (H): \(\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1\)
a) Gọi M(x;y) thuộc các đường đã cho và M’(x’;y’) thuộc các đường ảnh của chúng.
Theo công thức tọa độ của phép tịnh tiến ta có: \(\left\{ \begin{array}{l}x' = 1 + x\\y' = - 2 + y\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = x' - 1\\y = y' + 2\end{array} \right.\)
Thay x, y vào phương trình các đường ta có:
Đường thẳng a’: 3(x’-1)-5(y’+2)+1=0 \( \Leftrightarrow \)3x’-5y’-12=0
Đường thẳng b’: 2(x’-1)+(y’+2)+100=0 hay : 2x’+y’+100=0
b) Đường tròn (C’): \({\left( {x' - 1} \right)^2} + {\left( {y' + 2} \right)^2} - 4\left( {x' - 1} \right) + y' + 2 - 1 = 0\)
Hay: \({x^2} + {y^2} - 6{\rm{x}} + 5y + 10 = 0\)
c) Đường (E’): \(\frac{{{{\left( {x' - 1} \right)}^2}}}{9} + \frac{{{{\left( {y' + 2} \right)}^2}}}{4} = 1 \Leftrightarrow \frac{{{{\left( {x - 1} \right)}^2}}}{9} + \frac{{{{\left( {y + 2} \right)}^2}}}{4} = 1\)
d) Đường (H’): \(\frac{{{{\left( {x' - 1} \right)}^2}}}{{16}} - \frac{{{{\left( {y' + 2} \right)}^2}}}{9} = 1 \Leftrightarrow \frac{{{{\left( {x - 1} \right)}^2}}}{{16}} - \frac{{{{\left( {y + 2} \right)}^2}}}{9} = 1\).
Cho điểm M(2;-3). Tìm ảnh của điểm M qua phép đối xứng trục d: y-2x=0.
Gọi N(x;y) là điểm đối xứng với M qua d và H là trung điểm của MN thì M,N đối xứng nhau qua d thì điều kiện là: \(\left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow U = 0\quad \left( 1 \right)\\H \in d\quad \quad \left( 2 \right)\end{array} \right.\,\)
Ta có: \(\overrightarrow {MN} = \left( {x - 2;y + 3} \right)\quad \overrightarrow U = \left( {1;2} \right)\quad H = \left( {\frac{{x + 2}}{2};\frac{{y - 3}}{2}} \right)\).
Điều kiện (*) \( \Leftrightarrow \left\{ \begin{array}{l}\left( {x - 2} \right).1 + \left( {y + 3} \right).2 = 0\\\frac{{x + 2}}{2} = \frac{{y - 3}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + 2y + 4 = 0\\y = x + 5\end{array} \right. \Rightarrow \left\{ \begin{array}{l}y = \frac{1}{3}\\x = - \frac{{14}}{3}\end{array} \right. \Rightarrow N = \left( { - \frac{{14}}{3};\frac{1}{3}} \right).\)
Trong mặt phẳng Oxy cho đường tròn (O;R) : \({x^2} + {y^2} + 2{\rm{x}} - 6y + 6 = 0\)và (E) : \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\) điểm I(1;2). Tìm ảnh của (O;R) và (E) qua phép đối xứng tâm I.
Gọi M(x;y) là điểm bất kỳ thuộc (O;R) và (E).
M’(x’;y’) là ảnh của M qua phép đối xứng tâm I.
Khi đó I là trung điểm của MM’ nên ta có:
\(\left\{ \begin{array}{l}{x_I} = \frac{{x + x'}}{2}\\{y_I} = \frac{{y + y'}}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x' = 2.1 - x\\y' = 2.2 - y\end{array} \right.\)
\(\Rightarrow \left\{ \begin{array}{l}x = 2 - x'\\y = 4 - y'\end{array} \right. \Rightarrow \left[ \begin{array}{l}{\left( {2 - x'} \right)^2} + {\left( {4 - y'} \right)^2} + 2\left( {2 - x'} \right) - 6\left( {4 - y'} \right) + 6 = 0\\\frac{{{{\left( {2 - x'} \right)}^2}}}{9} + \frac{{{{\left( {4 - y'} \right)}^2}}}{4} = 1\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{x^2} + {y^2} - 6{\rm{x}} - 2y + 6 = 0\\\frac{{{{\left( {2 - x} \right)}^2}}}{9} + \frac{{{{\left( {4 - y} \right)}^2}}}{4} = 1\end{array} \right.\)
Vậy ảnh của (O;R) và (E) qua phép đối xứng tâm I có phương trình lần lượt là:
\({x^2} + {y^2} - 6{\rm{x}} - 2y + 6 = 0;\,\,\frac{{{{\left( {2 - x} \right)}^2}}}{9} + \frac{{{{\left( {4 - y} \right)}^2}}}{4} = 1\).
Trong mặt phẳng tọa độ Oxy, cho đường tròn (O): \({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} = 4.\) Tìm phương trình đường tròn (O’) là ảnh của (O) qua phép vị tự tâm O tỉ số k=2.
Tâm I của (O) có tọa độ I(1;1) bán kính R=2.
Nếu (O’) có tâm là J và bán kính R’ là ảnh của (O) qua phép vị tự tâm O ta có đẳng thức vectơ:
\(\overrightarrow {{\rm{OJ}}} = 2\overrightarrow {OI} \Leftrightarrow \left\{ \begin{array}{l}x' - 0 = 2.1\\y' - 0 = 2.1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x' = 2\\y' = 2\end{array} \right. \Rightarrow J\left( {2;2} \right)\).
R’=2R=2.2=4.
Vậy (O’): \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 16\).
Bài ôn tập chương Phép dời hình và Phép đồng dạng trong mặt phẳng sẽ giúp các em hệ thống lại toàn bộ kiến thức đã học ở chương I. Thông qua các sơ đồ tư duy, các em sẽ có được cách ghi nhớ bài một cách dễ dàng, hiệu quả.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 11 Ôn tập chương I để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Trong mặt phẳng Oxy, cho điểm A(0;2). Ảnh của A qua phép quay tâm O góc \( - {90^0}\) có tọa độ là:
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 11 Ôn tập chương I sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 11 Cơ bản và Nâng cao.
Bài tập 9 trang 36 SGK Hình học 11
Bài tập 8 trang 36 SGK Hình học 11
Bài tập 7 trang 36 SGK Hình học 11
Bài tập 6 trang 36 SGK Hình học 11
Bài tập 5 trang 36 SGK Hình học 11
Bài tập 4 trang 36 SGK Hình học 11
Bài tập 3 trang 35 SGK Hình học 11
Bài tập 2 trang 35 SGK Hình học 11
Bài tập 1 trang 35 SGK Hình học 11
Bài tập 7 trang 35 SGK Hình học 11
Bài tập 1.31 trang 37 SBT Hình học 11
Bài tập 5 trang 35 SGK Hình học 11
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm thứ hai ở cấp trung học phổ thông, gần đến năm cuối cấp nên học tập là nhiệm vụ quan trọng nhất. Nghe nhiều đến định hướng sau này rồi học đại học. Ôi nhiều lúc thật là sợ, hoang mang nhưng các em hãy tự tin và tìm dần điều mà mình muốn là trong tương lai nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK