Một cách chứng minh khác của bất đẳng thức tam giác:
Cho tam giác ABC. Giả sử BC là cạnh lớn nhất. Kẻ đường vuông góc AH đến đường thẳng BC (H thuộc BC).
a) Dùng nhận xét về cạnh lớn nhất trong tam giác vuông ở Bài 1 để chứng minh AB + AC > BC.
b) Từ giả thiết về cạnh BC, hãy suy ra hai bất đẳng thức tam giác còn lại.
a) Nhận xét : Trong tam giác vuông, góc vuông là góc lớn nhất , nên cạnh đối diện với góc vuông là cạnh lớn nhất.
Ta có : AH \(\perp\) BC nên \(\widehat{AHB}=90^0\)
Suy ra tam giác vuông AHB có :
AB > BH
Tương tự : AC > HC . Do đó :
AB + AC > HB + HC
b) Tam giác ABC có BC là cạnh lớn nhất nên
BC > AC => BC + AB > AC
Tương tự : BC + AC > AB.
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số), cấu trúc, không gian, và sự thay đổi.Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAPSGK